Home
Class 12
MATHS
If log{(x+y)/(3)}=((logx+logy))/(2) , th...

If `log{(x+y)/(3)}=((logx+logy))/(2)` , then `(x)/(y)+(y)/(x)` = …...

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the problem, we start with the equation: \[ \log\left(\frac{x+y}{3}\right) = \frac{\log x + \log y}{2} \] ### Step 1: Apply the properties of logarithms Using the property of logarithms that states \(\log a + \log b = \log(ab)\), we can rewrite the right side: \[ \frac{\log x + \log y}{2} = \log\left(\sqrt{xy}\right) \] So, the equation becomes: \[ \log\left(\frac{x+y}{3}\right) = \log\left(\sqrt{xy}\right) \] ### Step 2: Eliminate the logarithm Since the logarithm function is one-to-one, we can equate the arguments: \[ \frac{x+y}{3} = \sqrt{xy} \] ### Step 3: Cross-multiply to eliminate the fraction Multiplying both sides by 3 gives: \[ x + y = 3\sqrt{xy} \] ### Step 4: Square both sides To eliminate the square root, we square both sides: \[ (x + y)^2 = (3\sqrt{xy})^2 \] This simplifies to: \[ x^2 + 2xy + y^2 = 9xy \] ### Step 5: Rearrange the equation Rearranging the equation gives: \[ x^2 + y^2 + 2xy - 9xy = 0 \] This simplifies to: \[ x^2 + y^2 - 7xy = 0 \] ### Step 6: Factor the expression We can express \(x^2 + y^2\) in terms of \(xy\): \[ x^2 + y^2 = 7xy \] ### Step 7: Use the identity We know that: \[ \frac{x}{y} + \frac{y}{x} = \frac{x^2 + y^2}{xy} \] Substituting the expression we found: \[ \frac{x}{y} + \frac{y}{x} = \frac{7xy}{xy} = 7 \] ### Final Result Thus, we conclude that: \[ \frac{x}{y} + \frac{y}{x} = 7 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (Multiple choice questions)|72 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If log(x-y)-log5-(1)/(2)log x-(1)/(2)log y=0 then (x)/(y)+(y)/(x) is equal to

x(dy)/(dx)=y(logy-logx+1)

Knowledge Check

  • If log ((x+y)/(3))=(1)/(2)(logx+logy)," then "(dy)/(dx)=

    A
    `(5y-2x)/(2y-5x)`
    B
    `(7x-2y)/(2x-7y)`
    C
    `(7y-2x)/(2y-7x)`
    D
    `(7x+2x)/(2x+7y)`
  • If y=x^((logx)^(log(logx))) , then (dy)/(dx) is

    A
    `(y)/(x)(lnx^(logx-1))+2lnxln(lnx)`
    B
    `(y)/(x)(logx)^(log(logx))(2log(logx)+1)`
    C
    `[(lnx)^(2)+2ln(lnx)]`
    D
    `(y)/(x)(logy)/(logx)(2log(logx)+1)`
  • If y= (log x) ^(logx) ,then (dy)/(dx)=

    A
    ` y( 1+log (log x) )`
    B
    ` y(1+ logx )`
    C
    ` (y)/(x) (1+log (logx ) )`
    D
    ` (y)/(x) (1+log x)`
  • Similar Questions

    Explore conceptually related problems

    If y= log_(10) x + log_x 10 + log_x x- log _(10) 10 , then (dy)/(dx) =….

    (dy)/(dx)+y/x logy=y/x^2 (logy)^2

    If y= ( log sin x) (logx ) ,then (dy)/(dx)

    x(logx-logy)dy-ydx=0, where logx-logy=u A) cx=log(x/y) B) log.(x)/(y)=log(log.(x)/(y))-(x)/(y)=x+c C) e^((x)/(y))+e^((x)/(y)-1)=e^(x)+c D) u=c(logu-1)

    x(dy)/(dx)=y(logy-logx), where y=vx