Home
Class 12
MATHS
Verify : 3^(sqrt((log(3)7)))=7^(sqrt((l...

Verify : `3^(sqrt((log_(3)7)))=7^(sqrt((log_(7)3)))`

Text Solution

AI Generated Solution

The correct Answer is:
To verify the equation \( 3^{\sqrt{\log_3 7}} = 7^{\sqrt{\log_7 3}} \), we will follow these steps: ### Step 1: Define Variables Let: - \( A = \sqrt{\log_3 7} \) - \( B = \sqrt{\log_7 3} \) ### Step 2: Rewrite the Equation We want to verify that: \[ 3^A = 7^B \] This can be rewritten as: \[ \frac{A}{B} = \frac{\sqrt{\log_3 7}}{\sqrt{\log_7 3}} \] ### Step 3: Use Logarithmic Properties Using the property of logarithms: \[ \log_a b = \frac{1}{\log_b a} \] We can express \( \log_7 3 \) in terms of \( \log_3 7 \): \[ \log_7 3 = \frac{1}{\log_3 7} \] Thus, we can rewrite \( B \): \[ B = \sqrt{\log_7 3} = \sqrt{\frac{1}{\log_3 7}} = \frac{1}{\sqrt{\log_3 7}} \] ### Step 4: Substitute Back into the Ratio Now substituting \( B \) back into our ratio: \[ \frac{A}{B} = \frac{\sqrt{\log_3 7}}{\frac{1}{\sqrt{\log_3 7}}} = \sqrt{\log_3 7} \cdot \sqrt{\log_3 7} = \log_3 7 \] ### Step 5: Simplify the Expression This simplifies to: \[ \frac{A}{B} = \log_3 7 \] ### Step 6: Exponentiate Both Sides Now, we exponentiate both sides to eliminate the logarithm: \[ \log_3 7 = \frac{A}{B} \implies 7 = 3^{\frac{A}{B}} \] ### Step 7: Substitute Back to Original Variables Since \( A = \sqrt{\log_3 7} \) and \( B = \sqrt{\log_7 3} \), we can write: \[ 7^{\sqrt{\log_7 3}} = 3^{\sqrt{\log_3 7}} \] ### Conclusion Thus, we have verified that: \[ 3^{\sqrt{\log_3 7}} = 7^{\sqrt{\log_7 3}} \] This confirms the original statement is true.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (Multiple choice questions)|72 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Miscellaneous exercise|3 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

sqrt(log_(3)7)=x^(sqrt(log_(7)3))find x

3^(sqrt(log_(3)7))=7^(sqrt(log_(7)3)) (a) True (b) False

Knowledge Check

  • |{:(5 ^( sqrt ( log _(5) 3)),5 ^( sqrt ( log _(5) 3)), 5 ^( sqrt ( log _(5) 3))),(3 ^(- log _(1//3))(4), (0.1 ) ^( log _(0.01) ) (4), 7 ^( log _(7))(3)), (7,3,5):}| is

    A
    0
    B
    `5 sqrt ( log _(5)3)`
    C
    `2.5 sqrt ( log _(5) 3)`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    The value of 5^(sqrt(log_(5))7)-7sqrt(log_(7)5) is

    If 3^(((log_(3)7)^(x))=7^(((log_(7)3))^(x)), then the value of x will be

    Simplify :""^(3)sqrt(5^((1)/(log_(7)5))+(1)/(sqrt(-log_(10)(0.1))))

    3^(log_(3)7)+7^(log_(8)(1/8))+log_(0.3)3

    if a,b,c are positive real numbers such that a^(log_(3)(7));b^(log_(7)(11))=49 and c^(log_(11)(25))=sqrt(11) find the vale of a^((log_(3)(7))^(2)+b^((log_(7)(11))^(2))+c)(log_(11)(25))^(2)

    Simplify: root(3)(5^((1)/(log_(7)5))+(1)/(sqrt(-log_(10)(0.1))))

    Find the value of x satisfying the equation,sqrt((log_(3)3sqrt(3)x+log_(x)3sqrt(3)x)*log_(3)x^(3))+sqrt(((log_(3)(3sqrt(x)))/(3)+(log_(x)(3sqrt(x)))/(3))*log_(3)x^(3))=2