Home
Class 12
MATHS
Take factors outside the radical sign ...

Take factors outside the radical sign
`(i) root3(54(1-sqrt(5))^(3))` `(ii) root5((5-sqrt(5))^(7))`
(iii) `sqrt(8(8)/(63))` `(iv) sqrt(11(11)/(120))`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the problems step by step. ### (i) \( \sqrt[3]{54(1-\sqrt{5})^3} \) 1. **Factor the expression inside the cube root**: \[ 54 = 27 \times 2 \] So, we can rewrite: \[ \sqrt[3]{54(1-\sqrt{5})^3} = \sqrt[3]{27 \times 2 \times (1-\sqrt{5})^3} \] 2. **Separate the cube root**: \[ = \sqrt[3]{27} \times \sqrt[3]{2} \times \sqrt[3]{(1-\sqrt{5})^3} \] 3. **Calculate the cube roots**: \[ \sqrt[3]{27} = 3 \quad \text{and} \quad \sqrt[3]{(1-\sqrt{5})^3} = 1 - \sqrt{5} \] Thus, we have: \[ = 3 \times \sqrt[3]{2} \times (1 - \sqrt{5}) \] 4. **Final expression**: \[ = 3(1 - \sqrt{5})\sqrt[3]{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (5) (Multiple choice questions)|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Self Assessment test|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (3) (Multiple choice questions)|15 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

(iii) ((sqrt(2))/(5))^(8)-:((sqrt(2))/(5))^(1/3)

Simplest rationalizing factor of (i)(7-3sqrt(5)) (ii) (3-2sqrt(2))/(5+2sqrt(3))

Simplify the following expressions.(i) (5+sqrt(7))(2+sqrt(5)) (ii) (5+sqrt(5))(5-sqrt(5)) (iv) (sqrt(11)-sqrt(7))(sqrt(11)+sqrt(7))

Simplify each of the following by rationalising the denominator,(1)/(5+sqrt(2)) (ii) (5+sqrt(6))/(5-sqrt(6)) (iii) (7+3sqrt(5))/(7-3sqrt(5)) (iv) (2sqrt(3)-sqrt(5))/(2sqrt(2)+3sqrt(3))

Examine whether the following numbres are rational or irrational: (i) (5-sqrt(5)) (5+sqrt(5)) (ii) (sqrt(3)+2)^(2) (iii) (2sqrt(13))/(3sqrt(52) - 4sqrt(117)) (iv) sqrt(8) + 4sqrt(32) - 6sqrt(2)

Simplify each of the following expressions : (i) (3+sqrt(3))(2+sqrt(2)) (ii) (3+sqrt(3))(3-sqrt(3)) (iii) (sqrt(5)+sqrt(2))^(2) (iv) (sqrt(5)-sqrt(2))(sqrt(5)+sqrt(2))

Rationalise the denominator of each the following (i)(2)/(sqrt(3))" "(ii)(1)/(3sqrt(5))" "(iii)(1)/(sqrt(8))" "(iv)(sqrt(2)+1)/(sqrt(3))

Simplify the following expressions: (i)(11+sqrt(11))(11-sqrt(11)) (ii) (5+sqrt(7))(5-sqrt(7)) (iii)(sqrt(8)-sqrt(2))(sqrt(8)+sqrt(2)) (iiii)(sqrt(7)-3)(sqrt(7)+3)

The square root of (7+3sqrt(5))(7-3sqrt(5)) is sqrt(5)(b)2(c)4(d)3sqrt(5)

(7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=a+(7sqrt(5))/(11)b