Home
Class 12
MATHS
sqrt(3+sqrt((5))) is equal to...

`sqrt(3+sqrt((5)))` is equal to

A

`sqrt(5)+1`

B

`sqrt(3)+sqrt(2)`

C

`(sqrt(5)+1)/(sqrt((2)))`

D

`(sqrt(5)+1)(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{3 + \sqrt{5}} \), we will simplify it step by step. ### Step 1: Rewrite the expression We start with the expression: \[ \sqrt{3 + \sqrt{5}} \] ### Step 2: Assume a form for simplification Let's assume that \( \sqrt{3 + \sqrt{5}} \) can be expressed in the form \( \sqrt{a} + \sqrt{b} \). Therefore, we have: \[ \sqrt{3 + \sqrt{5}} = \sqrt{a} + \sqrt{b} \] ### Step 3: Square both sides Squaring both sides gives us: \[ 3 + \sqrt{5} = a + b + 2\sqrt{ab} \] ### Step 4: Equate rational and irrational parts From the equation \( 3 + \sqrt{5} = a + b + 2\sqrt{ab} \), we can separate the rational and irrational parts: 1. \( a + b = 3 \) (rational part) 2. \( 2\sqrt{ab} = \sqrt{5} \) (irrational part) ### Step 5: Solve for \( ab \) From the second equation, we can solve for \( ab \): \[ \sqrt{ab} = \frac{\sqrt{5}}{2} \implies ab = \left(\frac{\sqrt{5}}{2}\right)^2 = \frac{5}{4} \] ### Step 6: Set up a system of equations Now we have a system of equations: 1. \( a + b = 3 \) 2. \( ab = \frac{5}{4} \) ### Step 7: Use the quadratic formula Let \( a \) and \( b \) be the roots of the quadratic equation \( x^2 - (a+b)x + ab = 0 \): \[ x^2 - 3x + \frac{5}{4} = 0 \] ### Step 8: Calculate the discriminant The discriminant \( D \) of this quadratic is: \[ D = b^2 - 4ac = 3^2 - 4 \cdot 1 \cdot \frac{5}{4} = 9 - 5 = 4 \] ### Step 9: Find the roots The roots are given by: \[ x = \frac{-b \pm \sqrt{D}}{2a} = \frac{3 \pm 2}{2} = \frac{5}{2} \text{ or } \frac{1}{2} \] ### Step 10: Assign values to \( a \) and \( b \) Thus, we can assign: \[ a = \frac{5}{2}, \quad b = \frac{1}{2} \] or vice versa. ### Step 11: Substitute back to find the original expression Now substituting back, we have: \[ \sqrt{3 + \sqrt{5}} = \sqrt{\frac{5}{2}} + \sqrt{\frac{1}{2}} = \frac{\sqrt{5}}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{\sqrt{5} + 1}{\sqrt{2}} \] ### Final Answer Thus, the final answer is: \[ \sqrt{3 + \sqrt{5}} = \frac{\sqrt{5} + 1}{\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Self Assessment test|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Miscellaneous exercise|3 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (4) |62 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

(sqrt(5)+sqrt(3))((3sqrt(3))/(sqrt(5)+sqrt(2))-sqrt(5)/(sqrt(3)+sqrt(2))) is equal to :

sqrt(8-2sqrt(15)) is equal to 3-sqrt(5)b*sqrt(5)-sqrt(3) c.5-sqrt(3)d.sqrt(5)+sqrt(3)

sqrt(10+2sqrt(6)+2sqrt(10)+2sqrt(15)) is equal to (sqrt(2)+sqrt(3)+sqrt(5))(sqrt(2)+sqrt(3)-sqrt(5))(c)(sqrt(2)+sqrt(5)-sqrt(3))(d) None of these

The value of log_(2)(root(3)(2+sqrt(5))+root(3)(2-sqrt(5))) is equal to

(12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to