Home
Class 12
MATHS
cos theta [(cos theta, sin theta),(-sin ...

`cos theta [(cos theta, sin theta),(-sin theta, cos theta)]+sin theta[(sin theta, -cos theta),(cos theta, sin theta)]` is equal to

A

`[(1,0),(0,1)]`

B

`[(0,1),(1,0)]`

C

`[(0,0),(1,1)]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ \cos \theta \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} + \sin \theta \begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix} \] we will follow these steps: ### Step 1: Multiply \(\cos \theta\) with the first matrix We will multiply \(\cos \theta\) with each element of the first matrix: \[ \cos \theta \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ -\cos \theta \sin \theta & \cos^2 \theta \end{pmatrix} \] ### Step 2: Multiply \(\sin \theta\) with the second matrix Next, we will multiply \(\sin \theta\) with each element of the second matrix: \[ \sin \theta \begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix} = \begin{pmatrix} \sin^2 \theta & -\sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{pmatrix} \] ### Step 3: Add the two resulting matrices Now we will add the two matrices obtained from the previous steps: \[ \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ -\cos \theta \sin \theta & \cos^2 \theta \end{pmatrix} + \begin{pmatrix} \sin^2 \theta & -\sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{pmatrix} \] Adding corresponding elements, we get: \[ \begin{pmatrix} \cos^2 \theta + \sin^2 \theta & \cos \theta \sin \theta - \sin \theta \cos \theta \\ -\cos \theta \sin \theta + \sin \theta \cos \theta & \cos^2 \theta + \sin^2 \theta \end{pmatrix} \] ### Step 4: Simplify the resulting matrix Now we can simplify the matrix: 1. The first element simplifies to \(\cos^2 \theta + \sin^2 \theta = 1\). 2. The second element simplifies to \(\cos \theta \sin \theta - \sin \theta \cos \theta = 0\). 3. The third element simplifies to \(-\cos \theta \sin \theta + \sin \theta \cos \theta = 0\). 4. The fourth element simplifies to \(\cos^2 \theta + \sin^2 \theta = 1\). Thus, the resulting matrix is: \[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Final Result The final result of the expression is: \[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

Simplify cos theta[(cos theta,sin theta),(-sin theta,cos theta)]+sin theta[(sin theta,-cos theta),(cos theta,sin theta)]

(i) |(cos theta,-sin theta),(sin theta,cos theta)|

Simplify: cos theta[cos theta sin theta-sin theta cos theta]+sin theta[sin theta-cos theta cos theta sin theta]

[[ Simplify :cos thetacos theta,sin theta-sin theta,cos theta]]+sin theta[[sin theta,-cos thetacos theta,sin theta]]

If 3sin theta =2 cos theta , then (4sin theta - cos theta)/(4cos theta+sin theta) is equal to :

cos theta/(1+sin theta)=(1-sin theta)/cos theta

(sin theta)/(1-cos theta)=(1+cos theta)/(sin theta)

(sin 3theta)/(sin theta)-(cos 3theta)/(cos theta)=

" (1) "|[cos theta,-sin theta],[sin theta,cos theta]|

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If a matrix has 13 elements, then the possible dimensions (order) it c...

    Text Solution

    |

  2. The construction of 3xx4 matrix a whose element a(ij) is given by ((i...

    Text Solution

    |

  3. cos theta [(cos theta, sin theta),(-sin theta, cos theta)]+sin theta[(...

    Text Solution

    |

  4. If A is a 2times2 matrix such that [[2,1],[3,2]] A [[-3,2],[5,-3]]=[[1...

    Text Solution

    |

  5. What is the order of : [xyz] [{:(a,h,g),(h,b,f),(g,f,c):}][{:(x),(y),(...

    Text Solution

    |

  6. If [(1,x,1)][(1,3,2),(0,5,1),(0,3,2)][(1),(1),(x)]=O then x equals to

    Text Solution

    |

  7. If [(1,lamda,1)][(1,3,2),(0,5,1),(0,3,2)][(lamda),(1),(-2)]=O then lam...

    Text Solution

    |

  8. The matrix producet [(1),(-2),(3)][(4,5,2)][(2),(-3),(5)] equals

    Text Solution

    |

  9. The value of lamda for which the matrix product [(2,0,7),(0,1,0),(1,-2...

    Text Solution

    |

  10. If A and B are two matrices such that AB=B and BA=A then A^2+B^2= (A) ...

    Text Solution

    |

  11. If A=[(0,1),(1,0)] then A^(4)=

    Text Solution

    |

  12. If A=[(3,-4),(1,-1)] then value of A^(n) is

    Text Solution

    |

  13. If A=[(3,1),(-1,2)] then A^(2)=

    Text Solution

    |

  14. If A=[(a,b),(b,a)] and A^(2)=[(alpha, beta),(beta, alpha)]then (alpha,...

    Text Solution

    |

  15. If A=[(alpha, 2),(2,alpha)] and |A^(3)|=125 then alpha is

    Text Solution

    |

  16. If for a 2xx2 matrix A,A^(2)+I=O, where I is identity matrix then A eq...

    Text Solution

    |

  17. If A+B=[(1,0),(1,1)]and A-2B=[(-1,1),(0,-1)] then A is equal to

    Text Solution

    |

  18. If A=[(1,2,-1),(3,4,7),(5,1,6)] then the value of X where A+X is a uni...

    Text Solution

    |

  19. If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then lamda=

    Text Solution

    |

  20. If A=[(0,c,-b),(-c,0,a),(b,-a,0)],B=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,b...

    Text Solution

    |