Home
Class 12
MATHS
cos theta [(cos theta, sin theta),(-sin ...

`cos theta [(cos theta, sin theta),(-sin theta, cos theta)]+sin theta[(sin theta, -cos theta),(cos theta, sin theta)]` is equal to

A

`[(1,0),(0,1)]`

B

`[(0,1),(1,0)]`

C

`[(0,0),(1,1)]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ \cos \theta \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} + \sin \theta \begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix} \] we will follow these steps: ### Step 1: Multiply \(\cos \theta\) with the first matrix We will multiply \(\cos \theta\) with each element of the first matrix: \[ \cos \theta \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ -\cos \theta \sin \theta & \cos^2 \theta \end{pmatrix} \] ### Step 2: Multiply \(\sin \theta\) with the second matrix Next, we will multiply \(\sin \theta\) with each element of the second matrix: \[ \sin \theta \begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix} = \begin{pmatrix} \sin^2 \theta & -\sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{pmatrix} \] ### Step 3: Add the two resulting matrices Now we will add the two matrices obtained from the previous steps: \[ \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ -\cos \theta \sin \theta & \cos^2 \theta \end{pmatrix} + \begin{pmatrix} \sin^2 \theta & -\sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{pmatrix} \] Adding corresponding elements, we get: \[ \begin{pmatrix} \cos^2 \theta + \sin^2 \theta & \cos \theta \sin \theta - \sin \theta \cos \theta \\ -\cos \theta \sin \theta + \sin \theta \cos \theta & \cos^2 \theta + \sin^2 \theta \end{pmatrix} \] ### Step 4: Simplify the resulting matrix Now we can simplify the matrix: 1. The first element simplifies to \(\cos^2 \theta + \sin^2 \theta = 1\). 2. The second element simplifies to \(\cos \theta \sin \theta - \sin \theta \cos \theta = 0\). 3. The third element simplifies to \(-\cos \theta \sin \theta + \sin \theta \cos \theta = 0\). 4. The fourth element simplifies to \(\cos^2 \theta + \sin^2 \theta = 1\). Thus, the resulting matrix is: \[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Final Result The final result of the expression is: \[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

Simplify cos theta[(cos theta,sin theta),(-sin theta,cos theta)]+sin theta[(sin theta,-cos theta),(cos theta,sin theta)]

(i) |(cos theta,-sin theta),(sin theta,cos theta)|

Knowledge Check

  • If 3sin theta =2 cos theta , then (4sin theta - cos theta)/(4cos theta+sin theta) is equal to :

    A
    `(5)/(7)`
    B
    `(5)/(8)`
    C
    `(5)/(14)`
    D
    `(5)/(11)`
  • Similar Questions

    Explore conceptually related problems

    Simplify: cos theta[cos theta sin theta-sin theta cos theta]+sin theta[sin theta-cos theta cos theta sin theta]

    [[ Simplify :cos thetacos theta,sin theta-sin theta,cos theta]]+sin theta[[sin theta,-cos thetacos theta,sin theta]]

    cos theta/(1+sin theta)=(1-sin theta)/cos theta

    (sin theta)/(1-cos theta)=(1+cos theta)/(sin theta)

    (sin 3theta)/(sin theta)-(cos 3theta)/(cos theta)=

    " (1) "|[cos theta,-sin theta],[sin theta,cos theta]|

    (sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta