Home
Class 12
MATHS
Find the rank of the martrix A=[(1,2,3),...

Find the rank of the martrix `A=[(1,2,3),(2,4,7),(3,6,10)]` by reducing into the Echelon form.

Text Solution

AI Generated Solution

The correct Answer is:
To find the rank of the matrix \( A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \end{pmatrix} \) by reducing it to Echelon form, we will perform row operations. Here’s the step-by-step solution: ### Step 1: Write down the matrix We start with the matrix \( A \): \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \end{pmatrix} \] ### Step 2: Eliminate the first column below the first row We will use the first row to eliminate the entries below it in the first column. - For \( R_2 \) (the second row), we perform the operation: \[ R_2 \leftarrow R_2 - 2R_1 \] Calculation: \[ R_2 = \begin{pmatrix} 2 & 4 & 7 \end{pmatrix} - 2 \cdot \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 2-2 & 4-4 & 7-6 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \] - For \( R_3 \) (the third row), we perform the operation: \[ R_3 \leftarrow R_3 - 3R_1 \] Calculation: \[ R_3 = \begin{pmatrix} 3 & 6 & 10 \end{pmatrix} - 3 \cdot \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 3-3 & 6-6 & 10-9 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \] After these operations, the matrix becomes: \[ \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Eliminate the third row Next, we will eliminate the third row using the second row: \[ R_3 \leftarrow R_3 - R_2 \] Calculation: \[ R_3 = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \] Now the matrix is: \[ \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \] ### Step 4: Identify the rank The rank of a matrix is defined as the number of non-zero rows in its Echelon form. In our case, we have: - Two non-zero rows: \( \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \) and \( \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \) - One zero row: \( \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \) Thus, the rank of the matrix \( A \) is: \[ \text{Rank}(A) = 2 \] ### Summary The rank of the matrix \( A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \end{pmatrix} \) is \( 2 \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)|114 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

Find the rank of the matrix A=[[1,2,32,3,43,4,5]]

Find the rank of the matrix, A=[[1,2,3],[1,4,2],[2,6,5]]

Knowledge Check

  • The rank of the matrix A={:[(1,2,3,4),(4,3,2,1)]:} , is

    A
    1
    B
    2
    C
    3
    D
    4
  • Similar Questions

    Explore conceptually related problems

    Find the rank of the matrix: A=[[3,2,3],[2,4,9],[5,6,6]]

    The rank of the matrix {:A=[(1,2,3),(4,5,6),(3,4,5)]:} is

    3.Find the rank of the matrix [[1,2,3],[-2,4,-9],[3,6,4]]

    The rank of the matrix A=[[-1,2,3-2,4,6]] is

    8. Find the rank of a matrix A=[[1,3],[2,6]]

    " (B) Find the rank of matrix: " [[1,2,3],[2,4,7],[3,6,10]]

    Find the rank of the matrix [[1,1,1],[1,2,3],[1,3,6]]