Home
Class 12
MATHS
The circles x^(2)+y^(2)+2ax +c=0 and x^(...

The circles `x^(2)+y^(2)+2ax +c=0 and x^(2)+y^(2)+2by+c=0` touch each other if ………….

Text Solution

AI Generated Solution

The correct Answer is:
To determine the condition under which the circles \(x^2 + y^2 + 2ax + c = 0\) and \(x^2 + y^2 + 2by + c = 0\) touch each other, we can follow these steps: ### Step 1: Identify the centers and radii of the circles The general equation of a circle is given by: \[ x^2 + y^2 + 2gx + 2fy + c = 0 \] From this, we can identify the center and radius of each circle. For the first circle \(x^2 + y^2 + 2ax + c = 0\): - Center \(C_1 = (-a, 0)\) - Radius \(r_1 = \sqrt{a^2 - c}\) For the second circle \(x^2 + y^2 + 2by + c = 0\): - Center \(C_2 = (0, -b)\) - Radius \(r_2 = \sqrt{b^2 - c}\) ### Step 2: Calculate the distance between the centers The distance \(d\) between the centers \(C_1\) and \(C_2\) is given by: \[ d = \sqrt{(0 - (-a))^2 + (-b - 0)^2} = \sqrt{a^2 + b^2} \] ### Step 3: Set up the condition for the circles to touch For the circles to touch each other, the distance between their centers must equal the sum of their radii: \[ d = r_1 + r_2 \] Substituting the values we found: \[ \sqrt{a^2 + b^2} = \sqrt{a^2 - c} + \sqrt{b^2 - c} \] ### Step 4: Square both sides to eliminate the square roots Squaring both sides gives: \[ a^2 + b^2 = (\sqrt{a^2 - c} + \sqrt{b^2 - c})^2 \] Expanding the right side: \[ a^2 + b^2 = (a^2 - c) + (b^2 - c) + 2\sqrt{(a^2 - c)(b^2 - c)} \] This simplifies to: \[ a^2 + b^2 = a^2 + b^2 - 2c + 2\sqrt{(a^2 - c)(b^2 - c)} \] ### Step 5: Rearranging the equation Rearranging gives: \[ 0 = -2c + 2\sqrt{(a^2 - c)(b^2 - c)} \] Dividing by 2: \[ c = \sqrt{(a^2 - c)(b^2 - c)} \] ### Step 6: Square both sides again Squaring both sides again: \[ c^2 = (a^2 - c)(b^2 - c) \] Expanding the right side: \[ c^2 = a^2b^2 - ac^2 - bc^2 + c^2 \] This leads to: \[ 0 = a^2b^2 - ac^2 - bc^2 \] ### Step 7: Factor the equation Rearranging gives: \[ c(a^2 + b^2) = ab^2 + ac^2 \] Dividing by \(c\) (assuming \(c \neq 0\)): \[ \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c} \] ### Final Condition Thus, the circles touch each other if: \[ \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (5) (MULTIPLE CHOICE QUESTIONS) |32 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (5) (FILL IN THE BLANKS) |2 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE) |4 Videos
  • TANGENTS AND NORMALS

    ML KHANNA|Exercise SELF ASSESSMENT TEST (MULTIPLE CHOICE QUESTIONS)|19 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise SELF ASSESSMENT TEST|9 Videos

Similar Questions

Explore conceptually related problems

If the circles x^(2)+y^(2)+2ax+c=0 and x^(2)+y^(2)+2by+c=0 touch each other,then find the relation between a,b and c.

Prove that the circles x^(2)+y^(2)+2ax+c^(2)=0andx^(2)+y^(2)+2by+c^(2)=0 touch each other, if (1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2)) .

Knowledge Check

  • The circles x^(2)+y^(2)+2x-2y+1=0 and x^(2)+y^(2)-2x-2y+1=0 touch each other

    A
    externally at (0, 1)
    B
    internally at (0, 1)
    C
    externally at (1, 0)
    D
    internally at (1, 0)
  • If two circles x^(2) + y^(2) - 2ax + c = =0 and x^(2) + y^(2) - 2by + c = 0 touch each other , then c =

    A
    `(a^(2) + b^(2))/(a^(2)b^(2))`
    B
    `(a^(2) b^(2))/(a^(2) + b^(2))`
    C
    `(1)/(a^(2))- (1)/(b^(2))`
    D
    `(1)/(a^(2)) + (1)/(b^(2))`
  • The circle x^(2)+y^(2)-2ax+c^(2)=0 and x^(2)+y^(2)-2by+c^(2)=0 will touch each other externally if

    A
    `(1)/(a^(2)) +(1)/(b^(2)) =(1)/(c^(2))`
    B
    `(1)/(b^(2)) +(1)/(c^(2))=(1)/(a^(2))`
    C
    `(1)/(c^(2)) +(1)/(a^(2)) =(1)/(b^(2))`
    D
    none
  • Similar Questions

    Explore conceptually related problems

    If the circles x^(2)+y^(2)+2ax+c=0 and x^(2)+y^(2)+2by+c=0 touch each other,then (1)/(a^(2))+(1)/(b^(2))=(1)/(c)(b)(1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2))(c)a+b=2c(d)(1)/(a)+(1)/(b)=(2)/(c)

    If the circles x^(2)+y^(2)+2ax+b=0 and x^(2)+y^(2)+2cx+b=0 touch each other (a!=c)

    Show that the circles x ^(2) + y ^(2) - 2x =0 and x ^(2) + y ^(2) - 8x + 12=0 touch each other externally. Find the point of contact.

    If the circles x^(2)+y^(2)+2ax+c=0andx^(2)+y^(2)+aby+c=0 touch each other then show that (1)/(a^(2)),(1)/(2c),(1)/(b^(2)) are in A.P.

    The two circles x^(2)+y^(2)-cx=0 and x^(2)+y^(2)=4 touch each other if: