Home
Class 12
MATHS
If p sec theta - b tan theta =a and q se...

If `p sec theta - b tan theta =a` and `q sec theta +a tan theta =b`, then

A

`a^(2) + b^(2) = p^(2) + q^(2)`

B

`a^(2) + p^(2) = b^(2) + q^(2)`

C

`a^(2) + q^(2) = b^(2) +p^(2)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations \( p \sec \theta - b \tan \theta = a \) and \( q \sec \theta + a \tan \theta = b \), we will derive a relationship between \( A, B, P, \) and \( Q \). ### Step-by-step Solution: 1. **Start with the first equation:** \[ p \sec \theta - b \tan \theta = a \] We can express \( \sec \theta \) and \( \tan \theta \) in terms of sine and cosine: \[ p \frac{1}{\cos \theta} - b \frac{\sin \theta}{\cos \theta} = a \] This can be rewritten as: \[ \frac{p - b \sin \theta}{\cos \theta} = a \] 2. **Multiply both sides by \( \cos \theta \):** \[ p - b \sin \theta = a \cos \theta \] Rearranging gives us: \[ p = a \cos \theta + b \sin \theta \quad \text{(Equation 1)} \] 3. **Now consider the second equation:** \[ q \sec \theta + a \tan \theta = b \] Again, substituting for \( \sec \theta \) and \( \tan \theta \): \[ q \frac{1}{\cos \theta} + a \frac{\sin \theta}{\cos \theta} = b \] This can be rewritten as: \[ \frac{q + a \sin \theta}{\cos \theta} = b \] 4. **Multiply both sides by \( \cos \theta \):** \[ q + a \sin \theta = b \cos \theta \] Rearranging gives us: \[ q = b \cos \theta - a \sin \theta \quad \text{(Equation 2)} \] 5. **Now we will square both equations to find \( P^2 + Q^2 \):** - From Equation 1: \[ P^2 = (a \cos \theta + b \sin \theta)^2 = a^2 \cos^2 \theta + b^2 \sin^2 \theta + 2ab \sin \theta \cos \theta \] - From Equation 2: \[ Q^2 = (b \cos \theta - a \sin \theta)^2 = b^2 \cos^2 \theta + a^2 \sin^2 \theta - 2ab \sin \theta \cos \theta \] 6. **Adding \( P^2 \) and \( Q^2 \):** \[ P^2 + Q^2 = (a^2 \cos^2 \theta + b^2 \sin^2 \theta + 2ab \sin \theta \cos \theta) + (b^2 \cos^2 \theta + a^2 \sin^2 \theta - 2ab \sin \theta \cos \theta) \] Simplifying this: \[ P^2 + Q^2 = (a^2 + b^2)(\cos^2 \theta + \sin^2 \theta) \] 7. **Using the Pythagorean identity:** \[ \cos^2 \theta + \sin^2 \theta = 1 \] Therefore: \[ P^2 + Q^2 = a^2 + b^2 \] ### Final Result: The relationship between \( P, Q, A, \) and \( B \) is: \[ P^2 + Q^2 = A^2 + B^2 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) ( MULTIPLE CHOICE QUESTIONS)|100 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (2) TRUE AND FALSE|4 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

Eliminate theta between the equation a sec theta + b tan theta + c=0 and p sec theta + q tan theta + r=0

If sec theta + tan theta = 4 , then sec theta- tan theta =?

Knowledge Check

  • if x = a sec theta + b tan theta y = b sec theta + a tan theta then x^(2) - y^(2) is equal to

    A
    `4ab sec theta tan theta`
    B
    ` a^(2) - b^(2)`
    C
    `b^(2) - a^(2)`
    D
    `a^(2) + b^(2)`
  • If sec theta - tan theta = P , then "cosec" theta =?

    A
    `(2P)/(1+P^2)`
    B
    `(1-P^2)/(1+P^2)`
    C
    `(P^2+1)/(1-P^2)`
    D
    `(2P)/(1-P^2)`
  • If sec theta + tan theta = p , then cos theta is

    A
    `(rho^(2) + 1)/( rho^(2) - 1)`
    B
    ` ( rho^(2) - 1)/(( rho^(2)+ 1)^(2))`
    C
    `(2 rho)/( rho^(2) + 1)`
    D
    ` ( 4 rho^(2))/(( rho^(2) + 1) ^(2))`
  • Similar Questions

    Explore conceptually related problems

    If sec theta + tan theta = 12.5 , then sec theta - tan theta = ?

    If a sec theta+b tan theta+c=0 and p sec theta+q tan theta+r=0, prove that (br-qc)^(2)-(pc-ar)^(2)=(aq-bp)^(2)

    Prove that (1)/(sec theta - tan theta) = sec theta + tan theta

    Prove that: 1/(sec theta - tan theta) = sec theta + tan theta .

    If "cosec" theta - sin theta =p^3 and sec theta - cos theta = q^3 , then what is the value of tan theta ?