Home
Class 12
MATHS
If theta lies in the third quadrant , th...

If `theta` lies in the third quadrant , then the expression `sqrt(( 4 sin^(4) theta + sin^(2) 2 theta )) + 4 cos^(2) ((1)/( 4) pi - ( 1)/( 2) theta )` equals 2.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{4 \sin^4 \theta + \sin^2 2\theta} + 4 \cos^2 \left(\frac{\pi}{4} - \frac{1}{2} \theta\right) = 2 \) given that \( \theta \) lies in the third quadrant, we will follow these steps: ### Step 1: Simplify \( \sin^2 2\theta \) We know that: \[ \sin 2\theta = 2 \sin \theta \cos \theta \] Thus, \[ \sin^2 2\theta = (2 \sin \theta \cos \theta)^2 = 4 \sin^2 \theta \cos^2 \theta \] ### Step 2: Substitute \( \sin^2 2\theta \) into the expression Now, substitute \( \sin^2 2\theta \) into the original expression: \[ \sqrt{4 \sin^4 \theta + 4 \sin^2 \theta \cos^2 \theta} \] ### Step 3: Factor out the common term Factor out \( 4 \) from the square root: \[ \sqrt{4(\sin^4 \theta + \sin^2 \theta \cos^2 \theta)} = 2 \sqrt{\sin^4 \theta + \sin^2 \theta \cos^2 \theta} \] ### Step 4: Simplify \( \sin^4 \theta + \sin^2 \theta \cos^2 \theta \) Let \( x = \sin^2 \theta \), then \( \cos^2 \theta = 1 - x \): \[ \sin^4 \theta + \sin^2 \theta \cos^2 \theta = x^2 + x(1-x) = x^2 + x - x^2 = x \] Thus, \[ \sqrt{\sin^4 \theta + \sin^2 \theta \cos^2 \theta} = \sqrt{\sin^2 \theta} = |\sin \theta| \] ### Step 5: Consider the sign of \( \sin \theta \) Since \( \theta \) is in the third quadrant, \( \sin \theta < 0 \). Therefore, \[ |\sin \theta| = -\sin \theta \] ### Step 6: Substitute back into the expression Now we have: \[ 2 \sqrt{\sin^4 \theta + \sin^2 \theta \cos^2 \theta} = 2(-\sin \theta) = -2 \sin \theta \] ### Step 7: Simplify \( 4 \cos^2 \left(\frac{\pi}{4} - \frac{1}{2} \theta\right) \) Using the cosine subtraction formula: \[ \cos \left(\frac{\pi}{4} - \frac{1}{2} \theta\right) = \frac{\sqrt{2}}{2} \cos \left(-\frac{1}{2} \theta\right) + \frac{\sqrt{2}}{2} \sin \left(-\frac{1}{2} \theta\right) \] However, we can also use the identity: \[ \cos^2 \left(\frac{\pi}{4} - \frac{1}{2} \theta\right) = \frac{1 + \sin \theta}{2} \] Thus, \[ 4 \cos^2 \left(\frac{\pi}{4} - \frac{1}{2} \theta\right) = 2(1 + \sin \theta) \] ### Step 8: Combine the results Now we combine: \[ -2 \sin \theta + 2(1 + \sin \theta) = -2 \sin \theta + 2 + 2 \sin \theta = 2 \] ### Conclusion Thus, we have shown that: \[ \sqrt{4 \sin^4 \theta + \sin^2 2\theta} + 4 \cos^2 \left(\frac{\pi}{4} - \frac{1}{2} \theta\right) = 2 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (5) ( MULTIPLE CHOICE QUESTIONS)|26 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) ( MULTIPLE CHOICE QUESTIONS)|100 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If theta lies in 3rd quadrant,then the value of the expression sqrt(4sin^(4)theta+sin^(2)2 theta)+4cos^(2)((pi)/(4)-(theta)/(2)) is equal to

sqrt(4cos^(4)theta+sin^(2)2 theta)+4cos^(2)((pi)/(2)+(0)/(2))

Knowledge Check

  • If sin theta - 4//5 and theta lies in the third quadrant , then the value of cos ( theta //2) is

    A
    `1//5`
    B
    `- 1// sqrt( 10)`
    C
    `-1 // sqrt( 5)`
    D
    `1// sqrt( 10)`
  • sin^(4) theta + 2 cos^(2) theta (1 - (1)/( sec^(2) theta)) + cos ^(4) theta =

    A
    1
    B
    2
    C
    `sqrt(2)`
    D
    0
  • If theta in ((pi)/(2), (3pi)/(2)), then the value of sqrt(4 cos ^(4) theta + sin ^(2) 2 theta) + 4 cot theta cos ^(2) ((pi)/(4) +(theta)/(2)) is

    A
    `-2 cot theta `
    B
    `2 cot theta`
    C
    `2 cos theta`
    D
    `2 sin theta `
  • Similar Questions

    Explore conceptually related problems

    sin ^ (4) theta + 2sin ^ (2) theta (1- (1) / (cos ec ^ (2) theta)) + cos ^ (4) theta =

    If theta lies in the first quadrant and 5tan theta=4 then (5sin theta-3cos theta)/(sin theta+2cos theta)=

    If cot theta =(5)/(12) and theta lies in the third quadrant, then what is (2 sin theta + 3cos theta ) equal to?

    If sin theta=-(4)/(5) and theta lies in third quadrant, then the value of cos((theta)/(2)) is

    If sin theta + sin^(2) theta=1 " then " cos^(2) theta+ cos^(4) theta is equal to