Home
Class 12
MATHS
f(x) is the integral of (2 sin x - sin 2...

`f(x)` is the integral of `(2 sin x - sin 2x)/x^(3), x ne 0, lim_(x to 0) f'(x)`=………..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of \( f'(x) \) as \( x \) approaches 0, where \( f(x) \) is defined as the integral of \( \frac{2 \sin x - \sin 2x}{x^3} \) for \( x \neq 0 \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \int \frac{2 \sin x - \sin 2x}{x^3} \, dx \] 2. **Differentiate \( f(x) \)** using the Fundamental Theorem of Calculus: \[ f'(x) = \frac{2 \sin x - \sin 2x}{x^3} \] 3. **Evaluate the limit**: \[ \lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{2 \sin x - \sin 2x}{x^3} \] This limit results in the indeterminate form \( \frac{0}{0} \). 4. **Apply L'Hôpital's Rule**: Since we have an indeterminate form, we differentiate the numerator and the denominator: - Derivative of the numerator \( 2 \sin x - \sin 2x \): \[ \frac{d}{dx}(2 \sin x - \sin 2x) = 2 \cos x - 2 \cos 2x \] - Derivative of the denominator \( x^3 \): \[ \frac{d}{dx}(x^3) = 3x^2 \] 5. **Rewrite the limit**: \[ \lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{2 \cos x - 2 \cos 2x}{3x^2} \] 6. **Evaluate the limit again**: This still results in the indeterminate form \( \frac{0}{0} \), so we apply L'Hôpital's Rule again: - Derivative of the numerator \( 2 \cos x - 2 \cos 2x \): \[ \frac{d}{dx}(2 \cos x - 2 \cos 2x) = -2 \sin x + 4 \sin 2x \] - Derivative of the denominator \( 3x^2 \): \[ \frac{d}{dx}(3x^2) = 6x \] 7. **Rewrite the limit again**: \[ \lim_{x \to 0} \frac{-2 \sin x + 4 \sin 2x}{6x} \] 8. **Evaluate the limit**: This limit is still in the form \( \frac{0}{0} \), so we apply L'Hôpital's Rule once more: - Derivative of the numerator: \[ \frac{d}{dx}(-2 \sin x + 4 \sin 2x) = -2 \cos x + 8 \cos 2x \] - Derivative of the denominator: \[ \frac{d}{dx}(6x) = 6 \] 9. **Final limit**: \[ \lim_{x \to 0} \frac{-2 \cos x + 8 \cos 2x}{6} \] Evaluating at \( x = 0 \): \[ = \frac{-2 \cdot 1 + 8 \cdot 1}{6} = \frac{6}{6} = 1 \] ### Final Answer: \[ \lim_{x \to 0} f'(x) = 1 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS) |133 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

f(x) is the integral of (2sin x-sin2x)/(x^(3)),x!=0. Find lim_(x rarr0)f'(x)[wheref'(x)=(df)/(dx)]

If f(x) is the integral of (2 sin x-sin 2 x)/(x^(3)), "where x" ne 0, "then find" lim_(x rarr 0) f'(x) .

Knowledge Check

  • If f(x) = x sin (1//x), x ne 0 , then lim_(x to 0) f(x) =

    A
    1
    B
    0
    C
    `-1`
    D
    not exist
  • If the function f(x)=(sin3x+a sin 2x+b)/(x^(3)), x ne 0 is continuous at x=0 and f(0)=K, AA K in R , then b-a is equal to

    A
    4
    B
    `(5)/(2)`
    C
    5
    D
    `(3)/(2)`
  • If f(x) = (a sin x + sin 2x)/(x^(3)) ne 0 and f(x) is continuous at x =0 then

    A
    a=2
    B
    f(0) =1
    C
    f(0) =-1
    D
    a =1
  • Similar Questions

    Explore conceptually related problems

    Examine the continuity of f(x) = {((sin2x)/(2x), x ne 0),(2, x = 0):} at x = 0

    Evaluate lim_(x rarr0)(2sin x-sin(2x))/(x^(3))

    Examine the continuity of f(x) at x=0 if f(x)= (sin 2x)/(2x), x ne 0

    lim_(x rarr0)(2sin x^(0)-sin2x^(0))/(x^(3))

    If f(x) =x^(2) sin (1//x), x ne 0, f(0)=0 , then