Home
Class 12
MATHS
lim(x to 0)(sqrt((1/2)(1- cos 2x)))/x=...

`lim_(x to 0)(sqrt((1/2)(1- cos 2x)))/x=`

A

1

B

`-1`

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sqrt{\frac{1}{2}(1 - \cos 2x)}}{x} \), we will follow these steps: ### Step 1: Simplify the expression inside the limit We start with the expression: \[ \lim_{x \to 0} \frac{\sqrt{\frac{1}{2}(1 - \cos 2x)}}{x} \] ### Step 2: Use the trigonometric identity for \(1 - \cos 2x\) Recall the identity: \[ 1 - \cos 2x = 2 \sin^2 x \] Using this identity, we can rewrite the limit: \[ \lim_{x \to 0} \frac{\sqrt{\frac{1}{2}(2 \sin^2 x)}}{x} \] ### Step 3: Simplify the square root The expression simplifies to: \[ \lim_{x \to 0} \frac{\sqrt{\sin^2 x}}{x} \] Since \(\sqrt{\sin^2 x} = |\sin x|\), and as \(x\) approaches 0, \(\sin x\) is positive, we can drop the absolute value: \[ \lim_{x \to 0} \frac{\sin x}{x} \] ### Step 4: Evaluate the limit We know from the standard limit result that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] ### Final Result Thus, the limit is: \[ \lim_{x \to 0} \frac{\sqrt{\frac{1}{2}(1 - \cos 2x)}}{x} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x to 0) (sqrt(1/2(1-cos^(2)x)))/x is

The value of lim_(x rarr0)(sqrt((1)/(2)(1-cos2x)))/(x) is (a) 1(b)-1(c)0(d)none of these

lim_(x to 0) (sqrt(1- cos 2x))/(sqrt2x) =

Find lim_(xto0) sqrt((1)/(2)(1-cos2x))/(x) if exists.

Statement-1 : lim_(x to 0) (sqrt(1 - cos 2x))/(x) at (x = 0). Right and limit != hand limit

lim_(x rarr0)(sqrt((1-cos2x)/(2)))/(x)

lim_(x to 1) sqrt(1-cos 2(x-1))/(x-1)

lim_(x rarr0)(sqrt(2)-sqrt(1cos x))/(x^(2))

(i) lim_(x to (pi)/(2)) (1+cos 2x)/((pi-2x)^(2)) (ii) lim_( x to 0) (1-cos x.sqrt(cos 2x))/(x^(2)) (iii) lim_(thetararr(pi)/(6)) (sin(theta-(pi)/(6)))/(sqrt(3)-2 cos theta)

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. lim(x to 0)(sqrt((1/2)(1- cos 2x)))/x=

    Text Solution

    |

  2. underset (x to 1) lim sqrt(1-cos 2(x-1))/(x-1)

    Text Solution

    |

  3. If f(x)={{:((sin[x])/([x])","" ""for "[x]ne0),(0","" ""for "[x]=0):...

    Text Solution

    |

  4. "lt"(x to infty) (log x)/[[x]], where [•] has the usual meaning is

    Text Solution

    |

  5. The left hand limit of f(x) = {|x|^(3)/a -[x/a]^(3)}, (a gt 0) where...

    Text Solution

    |

  6. lim(x rarr3)(|x-3|)/(x-3)=

    Text Solution

    |

  7. Let f(x) = {{:(int(0)^(x) {5+|1-t|dt}, if x gt 2),(5x+1, if x le 2):},...

    Text Solution

    |

  8. The value of lim(xto1^(+))(int(1)^(x)|t-1|dt)/(sin(x-1)) is

    Text Solution

    |

  9. lim(x->a)(x)/(x-a)int(a)^(x)f(x)dx equals

    Text Solution

    |

  10. If f(x) = {{:(x, x lt 0),(1, x=0),(x^(2), x gt a):}, then lim(x to 0) ...

    Text Solution

    |

  11. If [x] denotes the greatest integer less than or equal to x,then the v...

    Text Solution

    |

  12. Let f(x)={(x^2,x notin Z),((k(x^2-4))/(2-x),x notinZ):} Then, lim(xt...

    Text Solution

    |

  13. If f(x)={:{(x,x le 1),(x^(2)+bx+c, x gt 1 and f'(x)) exists finitely f...

    Text Solution

    |

  14. If f(x) is an odd function of x and "lt"(x to 0) f(x) exists then the...

    Text Solution

    |

  15. Lt(x to 0)(e^(1//x)-1)/(e^(1//x)+1) is equal to:

    Text Solution

    |

  16. lim(x to 0) (1+ sin x)^(1//x^(2)) is equal to:

    Text Solution

    |

  17. lim(xto0)(sin[cosx])/(1+[cosx]), ([.] denotes the greatest integer fun...

    Text Solution

    |

  18. The number of points at which the function f(x) = 1/(log|x|) is discon...

    Text Solution

    |

  19. The function f(x) = (log(1+ax)-log(1-bx))/(x) is not defined at x = 0....

    Text Solution

    |

  20. The value of f(0) so that the function f(x) = (log(1+x^(2) tanx)...

    Text Solution

    |