Home
Class 12
MATHS
lim(x to 0)(sqrt((1/2)(1- cos 2x)))/x=...

`lim_(x to 0)(sqrt((1/2)(1- cos 2x)))/x=`

A

1

B

`-1`

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sqrt{\frac{1}{2}(1 - \cos 2x)}}{x} \), we will follow these steps: ### Step 1: Simplify the expression inside the limit We start with the expression: \[ \lim_{x \to 0} \frac{\sqrt{\frac{1}{2}(1 - \cos 2x)}}{x} \] ### Step 2: Use the trigonometric identity for \(1 - \cos 2x\) Recall the identity: \[ 1 - \cos 2x = 2 \sin^2 x \] Using this identity, we can rewrite the limit: \[ \lim_{x \to 0} \frac{\sqrt{\frac{1}{2}(2 \sin^2 x)}}{x} \] ### Step 3: Simplify the square root The expression simplifies to: \[ \lim_{x \to 0} \frac{\sqrt{\sin^2 x}}{x} \] Since \(\sqrt{\sin^2 x} = |\sin x|\), and as \(x\) approaches 0, \(\sin x\) is positive, we can drop the absolute value: \[ \lim_{x \to 0} \frac{\sin x}{x} \] ### Step 4: Evaluate the limit We know from the standard limit result that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] ### Final Result Thus, the limit is: \[ \lim_{x \to 0} \frac{\sqrt{\frac{1}{2}(1 - \cos 2x)}}{x} = 1 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)(sqrt((1)/(2)(1-cos2x)))/(x) is (a) 1(b)-1(c)0(d)none of these

Find lim_(xto0) sqrt((1)/(2)(1-cos2x))/(x) if exists.

Knowledge Check

  • The value of lim_(x to 0) (sqrt(1/2(1-cos^(2)x)))/x is

    A
    1
    B
    `-1`
    C
    0
    D
    None of these
  • lim_(x to 0) (sqrt(1- cos 2x))/(sqrt2x) =

    A
    1
    B
    `-1`
    C
    zero
    D
    Does not exist
  • Statement-1 : lim_(x to 0) (sqrt(1 - cos 2x))/(x) at (x = 0). Right and limit != hand limit

    A
    Statement - 1 isTurue, Statement-2 is True, Statement-2 is a correct explanation for statement-1
    B
    Statement-1 is True, Statement-2 is True, Statement-2 is Not a correct explanation for statement-1
    C
    Statement-1 is True, Statement-2 is False
    D
    Statement -1 is False, Statement-2 is True
  • Similar Questions

    Explore conceptually related problems

    lim_(x rarr0)(sqrt((1-cos2x)/(2)))/(x)

    lim_(x rarr0)(sqrt(2)-sqrt(1cos x))/(x^(2))

    (i) lim_(x to (pi)/(2)) (1+cos 2x)/((pi-2x)^(2)) (ii) lim_( x to 0) (1-cos x.sqrt(cos 2x))/(x^(2)) (iii) lim_(thetararr(pi)/(6)) (sin(theta-(pi)/(6)))/(sqrt(3)-2 cos theta)

    lim_(x to 1) sqrt(1-cos 2(x-1))/(x-1)

    lim_(x to 1) sqrt(1- cos2(x-1))/(x-1)