Home
Class 12
MATHS
lim(x to pi//4) (sqrt(2)cos x-1)/(cot x-...

`lim_(x to pi//4) (sqrt(2)cos x-1)/(cot x-1)` equals

A

`1/sqrt(2)`

B

`1/2`

C

`1/(2sqrt(2))`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \cos x - 1}{\cot x - 1} \), we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{4} \) First, we substitute \( x = \frac{\pi}{4} \) into the expression to check if it results in an indeterminate form. \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \quad \text{and} \quad \cot\left(\frac{\pi}{4}\right) = 1 \] Now substituting these values into the limit: \[ \sqrt{2} \cos\left(\frac{\pi}{4}\right) - 1 = \sqrt{2} \cdot \frac{1}{\sqrt{2}} - 1 = 1 - 1 = 0 \] \[ \cot\left(\frac{\pi}{4}\right) - 1 = 1 - 1 = 0 \] Thus, we have a \( \frac{0}{0} \) indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if \( \lim_{x \to c} f(x) = 0 \) and \( \lim_{x \to c} g(x) = 0 \). Let: - \( f(x) = \sqrt{2} \cos x - 1 \) - \( g(x) = \cot x - 1 \) Now we need to find the derivatives \( f'(x) \) and \( g'(x) \). ### Step 3: Differentiate the Numerator and Denominator 1. **Differentiate the numerator**: \[ f'(x) = \frac{d}{dx}(\sqrt{2} \cos x - 1) = -\sqrt{2} \sin x \] 2. **Differentiate the denominator**: \[ g'(x) = \frac{d}{dx}(\cot x - 1) = -\csc^2 x \] ### Step 4: Rewrite the Limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to \frac{\pi}{4}} \frac{f'(x)}{g'(x)} = \lim_{x \to \frac{\pi}{4}} \frac{-\sqrt{2} \sin x}{-\csc^2 x} = \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \sin x}{\csc^2 x} \] Since \( \csc x = \frac{1}{\sin x} \), we have: \[ \csc^2 x = \frac{1}{\sin^2 x} \] Thus, the limit becomes: \[ \lim_{x \to \frac{\pi}{4}} \sqrt{2} \sin x \cdot \sin^2 x = \lim_{x \to \frac{\pi}{4}} \sqrt{2} \sin^3 x \] ### Step 5: Evaluate the Limit Substituting \( x = \frac{\pi}{4} \): \[ \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] So: \[ \sqrt{2} \left(\frac{1}{\sqrt{2}}\right)^3 = \sqrt{2} \cdot \frac{1}{2\sqrt{2}} = \frac{1}{2} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \cos x - 1}{\cot x - 1} = \frac{1}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise SELF ASSESSMENT TEST (TRUE AND FALSE TYPE QUESTIONS) |1 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise SELF ASSESSMENT TEST (FILL IN THE BLANKS) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (5) (MULTIPLE CHOICE QUESTIONS) |12 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr((pi)/(4)))(sqrt(2)cos x-1)/(cot x-1)

Evaluate: lim_(x rarr(pi)/(4))(sqrt(2)cos x-1)/(cot x-1)

Knowledge Check

  • lim_(x to pi) (sqrt(2 + cos x)-1)/(pi-x)^(2)

    A
    `2/pi`
    B
    `pi`
    C
    `1/4`
    D
    `1/2`
  • lim_(x to pi//4)(1- tan x)/(1-sqrt(2) sin x) equals:

    A
    `1/sqrt(2)`
    B
    `1/2`
    C
    `1/(2sqrt(2))`
    D
    1
  • lim_(x to pi//4) (1- tan x)/(1- sqrt(2) sinx) equals

    A
    `1/sqrt(2)`
    B
    `1/2`
    C
    `1/(2sqrt(2))`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    lim_(x rarr((pi)/(2)))(cos ecx-1)/(cot^(2)x) equals

    lim_(x rarr0)(5^(x)sqrt(1+2x)-cos x)/(x) equals to

    The value of lim_(x to 0) ((1)/(x^(2)) - cot x) equals

    lim_(x to pi//4) (1- cot^(3)x)/(2- cot x - cot^(3)x) =

    If the function f defined on (pi/6,pi/3) by {{:((sqrt2 cos x -1)/(cot x -1)" , " x ne pi/4),(" is continuous,"),(" k , "x=pi/4 ):} then k is equal to