Home
Class 12
MATHS
The greatest value of the function f(x) ...

The greatest value of the function `f(x) = (sin 2x)/(sin(x + pi/4))` on the interval `[0,pi/2]` is

A

`1/sqrt2`

B

`sqrt2`

C

`1`

D

`-sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the greatest value of the function \( f(x) = \frac{\sin 2x}{\sin(x + \frac{\pi}{4})} \) on the interval \( [0, \frac{\pi}{2}] \), we can follow these steps: ### Step 1: Rewrite the Function Using the double angle formula for sine, we can rewrite \( \sin 2x \): \[ f(x) = \frac{2 \sin x \cos x}{\sin(x + \frac{\pi}{4})} \] ### Step 2: Expand the Denominator Now, we expand \( \sin(x + \frac{\pi}{4}) \) using the sine addition formula: \[ \sin(x + \frac{\pi}{4}) = \sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} = \sin x \cdot \frac{1}{\sqrt{2}} + \cos x \cdot \frac{1}{\sqrt{2}} = \frac{\sin x + \cos x}{\sqrt{2}} \] ### Step 3: Substitute Back into the Function Substituting this back into our function gives: \[ f(x) = \frac{2 \sin x \cos x}{\frac{\sin x + \cos x}{\sqrt{2}}} = \frac{2\sqrt{2} \sin x \cos x}{\sin x + \cos x} \] ### Step 4: Simplify the Function Now, we simplify the function: \[ f(x) = \frac{2\sqrt{2} \sin x \cos x}{\sin x + \cos x} \] ### Step 5: Analyze the Function To find the maximum value of \( f(x) \), we can analyze the function. We know that \( \sin x \cos x \) achieves its maximum value of \( \frac{1}{2} \) at \( x = \frac{\pi}{4} \). ### Step 6: Evaluate at Critical Points Evaluate \( f(x) \) at \( x = \frac{\pi}{4} \): \[ f\left(\frac{\pi}{4}\right) = \frac{2\sqrt{2} \cdot \frac{1}{2}}{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}} = \frac{\sqrt{2}}{1} = \sqrt{2} \] ### Step 7: Check Endpoints Now, we check the endpoints of the interval: - At \( x = 0 \): \[ f(0) = \frac{\sin 0}{\sin(0 + \frac{\pi}{4})} = 0 \] - At \( x = \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right) = \frac{\sin \pi}{\sin(\frac{\pi}{2} + \frac{\pi}{4})} = 0 \] ### Conclusion The maximum value of \( f(x) \) on the interval \( [0, \frac{\pi}{2}] \) occurs at \( x = \frac{\pi}{4} \): \[ \text{Greatest value of } f(x) = \sqrt{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE )|1 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET(3) (MULTIPLE CHOICE QUESTIONS)|15 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE )|3 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MEASURES OF CENTRAL TENDENCY

    ML KHANNA|Exercise ASSERTION / REASON|1 Videos

Similar Questions

Explore conceptually related problems

The greatest value of the function f(x)=(sin2x)/(sin(x+(pi)/(4))) on the interval (0,(pi)/(2)) is (1)/(sqrt(2))(b)sqrt(2)(c)1(d)-sqrt(2)

The greatest value of function f(x)=(sin(2x))/(sin(x+(pi)/(4)))

Knowledge Check

  • The gratest value of the function f(x)=(sinx)/(sin(x+pi/4)) on thhe interval [0,pi//2] is

    A
    `1//sqrt2`
    B
    `sqrt2`
    C
    1
    D
    `-sqrt2`
  • The difference between the greatest and least values of the function f(x) = sin 2x - x on [-pi//2 , pi//2] is

    A
    `(sqrt3 + sqrt2 )/(2)`
    B
    `(sqrt3 + sqrt2)/(2) + (pi)/(6)`
    C
    `(pi)/(2)`
    D
    `pi`
  • The difference between the greatest and least values of the function f(x) = sin 2 x - x on [ -pi//2, pi//2] is

    A
    `pi`
    B
    `sqrt3/2 + pi/3`
    C
    `(sqrt3 + sqrt2)/2 + pi/6`
    D
    `1/2 (sqrt3 + sqr2)`
  • Similar Questions

    Explore conceptually related problems

    The maximum value of the function f(x)=sin x;[0,Pi] is

    Verify Rolle's Theorem for the function : f(x) = sin x + cos x in the interval [0,2pi]

    Verify Rolle's Theorem for the functions : f(x)=sin^(3)x+cos^(3)x in the interval [0,pi/2] .

    Verify Rolle's Theorem for the functions : f(x)=sin^(2)x , defined in the interval [0,pi]

    The maximum value of f(x)=2sin x+sin2x , in the interval [0, (3pi)/(2)] is :