Home
Class 12
MATHS
int (dx)/(cos^6 x + sin^6 x) is equal to...

`int (dx)/(cos^6 x + sin^6 x)` is equal to

A

`tan^(-1) (tan x - cot x)`

B

`tan^(-1) (-2 cot 2x)`

C

`log (tan x - cot x)`

D

`log (cot x - tan x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{dx}{\cos^6 x + \sin^6 x}, \] we will follow these steps: ### Step 1: Simplify the Denominator We start with the expression in the denominator: \[ \cos^6 x + \sin^6 x. \] Using the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \), we can rewrite it as: \[ \cos^6 x + \sin^6 x = (\cos^2 x + \sin^2 x)(\cos^4 x - \cos^2 x \sin^2 x + \sin^4 x). \] Since \( \cos^2 x + \sin^2 x = 1 \), we have: \[ \cos^6 x + \sin^6 x = \cos^4 x - \cos^2 x \sin^2 x + \sin^4 x. \] ### Step 2: Express in Terms of Tangent Next, we can express the integral in terms of \( \tan x \). We divide the numerator and denominator by \( \cos^6 x \): \[ \int \frac{dx}{\cos^6 x + \sin^6 x} = \int \frac{\sec^6 x \, dx}{1 + \tan^6 x}. \] Let \( t = \tan x \), then \( dx = \frac{dt}{\sec^2 x} = \frac{dt}{1 + t^2} \). ### Step 3: Substitute and Simplify Substituting \( t = \tan x \): \[ \int \frac{\sec^6 x}{1 + t^6} \cdot \frac{dt}{1 + t^2} = \int \frac{(1 + t^2)^3}{1 + t^6} dt. \] ### Step 4: Further Simplification Now, we can expand \( (1 + t^2)^3 \): \[ (1 + t^2)^3 = 1 + 3t^2 + 3t^4 + t^6. \] Thus, we have: \[ \int \frac{1 + 3t^2 + 3t^4 + t^6}{1 + t^6} dt. \] ### Step 5: Break into Partial Fractions We can break this integral into simpler parts: \[ \int \frac{1}{1 + t^6} dt + 3 \int \frac{t^2}{1 + t^6} dt + 3 \int \frac{t^4}{1 + t^6} dt. \] ### Step 6: Evaluate Each Integral 1. **First Integral**: \( \int \frac{1}{1 + t^6} dt \) can be evaluated using trigonometric or hyperbolic substitutions. 2. **Second Integral**: \( \int \frac{t^2}{1 + t^6} dt \) can be simplified by substituting \( u = t^3 \). 3. **Third Integral**: \( \int \frac{t^4}{1 + t^6} dt \) can also be simplified similarly. ### Step 7: Combine Results After evaluating these integrals, we will combine the results and substitute back \( t = \tan x \) to express the final answer in terms of \( x \). ### Final Answer The final result will be: \[ \int \frac{dx}{\cos^6 x + \sin^6 x} = \tan^{-1}(\tan x) - \cot x + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(1)/(cos x - sin x )dx is equal to

int _(0)^(pi//2) (cos x - sin x)/(1+cos x sin x)dx is equal to

int e^(x)(cos x-sin x)dx is equal to

int (dx)/( sin x ( 3 cos ^(2) x)) is equal to

int\ (dx)/(sin^(2)x*cos^(2)x) is equal to

int (1) / (cos x + sqrt (3) sin x) dx equals

int(sin x(dx)/(sqrt(1+cos x))) is equal to =

int cos 2x.cos 4x. Cos 6x dx is equal to