Home
Class 12
MATHS
Let f : [0, pi//2] to R such that f(0) =...

Let `f : [0, pi//2] to R` such that `f(0) = 3 and f'(x) = 1/(1 + cos x)` , then
`3 + pi/4 e le f(pi/2) le 3 + pi/2` True or False ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will start from the given function and its derivative. ### Step 1: Understand the given information We are given that \( f(0) = 3 \) and \( f'(x) = \frac{1}{1 + \cos x} \). ### Step 2: Integrate \( f'(x) \) To find \( f(x) \), we need to integrate \( f'(x) \): \[ f(x) = \int f'(x) \, dx = \int \frac{1}{1 + \cos x} \, dx \] ### Step 3: Simplify the integrand We can simplify \( \frac{1}{1 + \cos x} \) using the identity \( 1 + \cos x = 2 \cos^2 \left(\frac{x}{2}\right) \): \[ f'(x) = \frac{1}{2 \cos^2 \left(\frac{x}{2}\right)} = \frac{1}{2} \sec^2 \left(\frac{x}{2}\right) \] ### Step 4: Integrate using the secant function Now we integrate: \[ f(x) = \int \frac{1}{2} \sec^2 \left(\frac{x}{2}\right) \, dx \] The integral of \( \sec^2 u \) is \( \tan u \), so we have: \[ f(x) = \frac{1}{2} \cdot 2 \tan \left(\frac{x}{2}\right) + C = \tan \left(\frac{x}{2}\right) + C \] ### Step 5: Use the initial condition to find \( C \) We know \( f(0) = 3 \): \[ f(0) = \tan(0) + C = 0 + C = 3 \implies C = 3 \] Thus, we have: \[ f(x) = \tan \left(\frac{x}{2}\right) + 3 \] ### Step 6: Find \( f\left(\frac{\pi}{2}\right) \) Now we calculate \( f\left(\frac{\pi}{2}\right) \): \[ f\left(\frac{\pi}{2}\right) = \tan\left(\frac{\pi}{4}\right) + 3 = 1 + 3 = 4 \] ### Step 7: Verify the inequalities We need to check if: \[ 3 + \frac{\pi}{4} \leq f\left(\frac{\pi}{2}\right) \leq 3 + \frac{\pi}{2} \] Calculating the bounds: - \( 3 + \frac{\pi}{4} \approx 3 + 0.785 = 3.785 \) - \( 3 + \frac{\pi}{2} \approx 3 + 1.57 = 4.57 \) Since \( f\left(\frac{\pi}{2}\right) = 4 \): - \( 3.785 \leq 4 \leq 4.57 \) ### Conclusion Both inequalities are satisfied, thus the statement is **True**. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(MULTIPLE CHOICE QUESTIONS)|80 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

Let f:[0,(pi)/(2)]toR be continuous and satisfy f'(x)=(1)/(1+cosx) for all x in(0,(pi)/(2)) . If f(0)=3 then f((pi)/(2)) has the value equal to :

Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi , Then, f(x) is

Knowledge Check

  • f(x) = 1 + 2 sin x + 3 cos^2 x, ( 0 le x lt (2pi)/3) is

    A
    Min. at `x = 90^@`
    B
    Max. at `x = sin^(-1) 1/sqrt3`
    C
    Min. at `x = 30^@`
    D
    Max. at `x = sin^(-1) (1/3)`
  • Let f: [-1,1] to R be such that f(cos 4theta) =2/(2 sec^(2) theta) for theta in [0, pi/4] cup [pi/2, pi/2] , then the value of f(1/3) is

    A
    `1-sqrt(3/2)`
    B
    `1+ sqrt(3/2)`
    C
    `1-sqrt(2/3)`
    D
    `1+ sqrt(2/3)`
  • Let f(x) = 1 + 2 sin x + 2 cos^2 x, 0 le x le pi//2 . Then

    A
    f (x) is greatest at `pi//6`
    B
    least at `0, pi//2`
    C
    increasing in `[0,pi//6]` and decreasing in `(pi//6, pi//2)`
    D
    f(x) is continuous in `[0,pi//2]`
  • Similar Questions

    Explore conceptually related problems

    Let f(x) =2 sin x + cos 2x (0 le x le 2pi) and g(x) = x + cos x then

    If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

    The function f(x)=cos x, 0 le x le pi is

    Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2+ sinx] Then , the range of f(x) is

    Let f(x)=e^(cos^(-1)sin(x+ pi/3)) , then