Home
Class 12
MATHS
int(0)^(pi//2) f(sin 2x) sin x dx= int(0...

`int_(0)^(pi//2) f(sin 2x) sin x dx= int_(0)^(pi//2) f(sin 2x) cos x dx= sqrt""2 int_(0)^(pi//4) f(cos 2x) cos x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \cos x \, dx = \sqrt{2} \int_{0}^{\frac{\pi}{4}} f(\cos 2x) \cos x \, dx, \] we will denote the integrals as follows: - Let \( I_1 = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx \) - Let \( I_2 = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \cos x \, dx \) - Let \( I_3 = \int_{0}^{\frac{\pi}{4}} f(\cos 2x) \cos x \, dx \) ### Step 1: Show that \( I_1 = I_2 \) Using the property of integrals: \[ \int_{0}^{A} f(x) \, dx = \int_{0}^{A} f(A - x) \, dx, \] we can transform \( I_1 \): \[ I_1 = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx = \int_{0}^{\frac{\pi}{2}} f(\sin(2(\frac{\pi}{2} - x))) \sin(\frac{\pi}{2} - x) \, dx. \] Since \( \sin(2(\frac{\pi}{2} - x)) = \sin(\pi - 2x) = \sin(2x) \) and \( \sin(\frac{\pi}{2} - x) = \cos x \), we have: \[ I_1 = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \cos x \, dx = I_2. \] ### Step 2: Show that \( I_1 + I_2 = 2I_1 \) We can add \( I_1 \) and \( I_2 \): \[ I_1 + I_2 = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) (\sin x + \cos x) \, dx. \] ### Step 3: Simplify \( \sin x + \cos x \) Using the identity: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right), \] we can rewrite the integral: \[ I_1 + I_2 = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \, dx. \] ### Step 4: Change of variables for \( I_3 \) Now, we will relate \( I_3 \) to \( I_1 \) and \( I_2 \). We can use the substitution \( x = \frac{\pi}{4} - u \) in \( I_3 \): \[ I_3 = \int_{0}^{\frac{\pi}{4}} f(\cos 2x) \cos x \, dx. \] Using the property of integrals again, we can show that: \[ I_3 = \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{4}} f(\sin 2x) \, dx. \] ### Conclusion From the above steps, we have shown that: \[ I_1 = I_2 = \sqrt{2} I_3. \] Thus, we conclude that: \[ I_1 = I_2 = I_3. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (4) (Multiple Choice Questions)|22 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

int_(0)^( pi/2)(sin x)/(1+cos x)dx

Knowledge Check

  • int_(0)^(pi) dx/(3+2sin x + cos x) =

    A
    `(-pi)/2`
    B
    `pi/2`
    C
    `(-pi)/4`
    D
    `pi/4`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^( pi/2)sin^(2)x cos x dx

    Show that: int_(0)^( pi/2)f(sin2x)sin xdx=sqrt(2)int_(0)^( pi/4)f(cos2x)cos xdx

    int_(0)^(pi/2)(sin^(2)x*cos x)dx=

    int_(0)^(pi//2) x sin cos x dx=?

    "int_(0)^( pi/2)(|sin x|+|cos x|)dx

    int_(0)^(pi) x sin x. cos^(2) x dx

    int_(0)^((pi)/(2))(x)/(sin x+cos x)dx