To solve the equation
\[
\int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \cos x \, dx = \sqrt{2} \int_{0}^{\frac{\pi}{4}} f(\cos 2x) \cos x \, dx,
\]
we will denote the integrals as follows:
- Let \( I_1 = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx \)
- Let \( I_2 = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \cos x \, dx \)
- Let \( I_3 = \int_{0}^{\frac{\pi}{4}} f(\cos 2x) \cos x \, dx \)
### Step 1: Show that \( I_1 = I_2 \)
Using the property of integrals:
\[
\int_{0}^{A} f(x) \, dx = \int_{0}^{A} f(A - x) \, dx,
\]
we can transform \( I_1 \):
\[
I_1 = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx = \int_{0}^{\frac{\pi}{2}} f(\sin(2(\frac{\pi}{2} - x))) \sin(\frac{\pi}{2} - x) \, dx.
\]
Since \( \sin(2(\frac{\pi}{2} - x)) = \sin(\pi - 2x) = \sin(2x) \) and \( \sin(\frac{\pi}{2} - x) = \cos x \), we have:
\[
I_1 = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \cos x \, dx = I_2.
\]
### Step 2: Show that \( I_1 + I_2 = 2I_1 \)
We can add \( I_1 \) and \( I_2 \):
\[
I_1 + I_2 = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) (\sin x + \cos x) \, dx.
\]
### Step 3: Simplify \( \sin x + \cos x \)
Using the identity:
\[
\sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right),
\]
we can rewrite the integral:
\[
I_1 + I_2 = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \, dx.
\]
### Step 4: Change of variables for \( I_3 \)
Now, we will relate \( I_3 \) to \( I_1 \) and \( I_2 \). We can use the substitution \( x = \frac{\pi}{4} - u \) in \( I_3 \):
\[
I_3 = \int_{0}^{\frac{\pi}{4}} f(\cos 2x) \cos x \, dx.
\]
Using the property of integrals again, we can show that:
\[
I_3 = \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{4}} f(\sin 2x) \, dx.
\]
### Conclusion
From the above steps, we have shown that:
\[
I_1 = I_2 = \sqrt{2} I_3.
\]
Thus, we conclude that:
\[
I_1 = I_2 = I_3.
\]