Home
Class 12
MATHS
The value of int(-pi//2)^(pi//2) log {(2...

The value of `int_(-pi//2)^(pi//2) log {(2-sin theta)/(2+sin theta}d theta`

A

0

B

1

C

2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left( \frac{2 - \sin \theta}{2 + \sin \theta} \right) d\theta, \] we will use the property of definite integrals which states that if \( f(-x) = -f(x) \), then \[ \int_{-a}^{a} f(x) \, dx = 0. \] ### Step 1: Define the function Let \[ f(\theta) = \log \left( \frac{2 - \sin \theta}{2 + \sin \theta} \right). \] ### Step 2: Find \( f(-\theta) \) Now, we will evaluate \( f(-\theta) \): \[ f(-\theta) = \log \left( \frac{2 - \sin(-\theta)}{2 + \sin(-\theta)} \right). \] Using the property of sine, \( \sin(-\theta) = -\sin(\theta) \): \[ f(-\theta) = \log \left( \frac{2 + \sin \theta}{2 - \sin \theta} \right). \] ### Step 3: Simplify \( f(-\theta) \) Using the logarithmic property \( \log \left( \frac{a}{b} \right) = -\log \left( \frac{b}{a} \right) \): \[ f(-\theta) = -\log \left( \frac{2 - \sin \theta}{2 + \sin \theta} \right) = -f(\theta). \] ### Step 4: Apply the property of definite integrals Since we have shown that \( f(-\theta) = -f(\theta) \), we can apply the property: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\theta) \, d\theta = 0. \] ### Conclusion Thus, the value of the integral is \[ \boxed{0}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (3) True and False|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(-(pi)/(2))^((pi)/(2))log((a-sin theta)/(a+sin theta))d theta,a>0

The value of int_(0)^((pi)/(2))log(sin^(2)theta+k^(2)cos^(2)theta)d theta where k>=0, is:

Knowledge Check

  • The value of int_(-pi//2)^(pi//2) log((2-sintheta)/(2+sin theta)) d theta is

    A
    0
    B
    1
    C
    2
    D
    None of these
  • The value of int_(- pi//2)^(pi//2) ((2- sin theta)/( 2+ sin theta)) d theta is

    A
    `0`
    B
    `1`
    C
    `2`
    D
    none of these
  • The value of int_(-pi//2)^(pi//2) log""((2-sintheta)/(2+sintheta))d theta is

    A
    0
    B
    1
    C
    2
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    The value of int_(0)^(pi//2)ln((sin^(2)theta)/(cos^(3)theta))d theta is

    The value of the integral int_(-pi//2)^(pi//2) log((a-sin theta)/(a+sintheta))d theta, a gt 0 is

    The value of int_(0)^(pi//2)(log(1+x sin^(2) theta))/(sin^(2)theta)d theta,xge0 is equal to

    The value of int_(0)^(pi//2) sqrt( sin 2 theta) sin theta d theta is

    The value of int_(pi//4)^(pi//2) cot theta cosec^(2) theta d theta is