Home
Class 12
MATHS
If x +y= 3-cos4theta and x-y=4sin2theta ...

If `x +y= 3-cos4theta` and `x-y=4sin2theta` then

A

`x^(4)+y^(4)=9`

B

`sqrt(x)+sqrt(y)=16`

C

`x^(3)+y^(3)=2(x^(2)+y^(2))`

D

`sqrt(x)+sqrt(y)=2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations given in the problem, we will follow these steps: ### Step 1: Write down the equations We have two equations: 1. \( x + y = 3 - \cos(4\theta) \) (Equation 1) 2. \( x - y = 4\sin(2\theta) \) (Equation 2) ### Step 2: Solve for \( x \) and \( y \) To find \( x \) and \( y \), we can add and subtract the two equations. **Adding Equation 1 and Equation 2:** \[ (x + y) + (x - y) = (3 - \cos(4\theta)) + (4\sin(2\theta)) \] This simplifies to: \[ 2x = 3 - \cos(4\theta) + 4\sin(2\theta) \] Thus, we can express \( x \) as: \[ x = \frac{3 - \cos(4\theta) + 4\sin(2\theta)}{2} \quad \text{(Equation 3)} \] **Subtracting Equation 2 from Equation 1:** \[ (x + y) - (x - y) = (3 - \cos(4\theta)) - (4\sin(2\theta)) \] This simplifies to: \[ 2y = 3 - \cos(4\theta) - 4\sin(2\theta) \] Thus, we can express \( y \) as: \[ y = \frac{3 - \cos(4\theta) - 4\sin(2\theta)}{2} \quad \text{(Equation 4)} \] ### Step 3: Substitute \( x \) and \( y \) into a new equation Now, we can use the values of \( x \) and \( y \) to form a new equation. We can use the identity \( x^2 + y^2 = (x+y)^2 - 2xy \). From Equation 1: \[ x + y = 3 - \cos(4\theta) \] From Equation 2: \[ x - y = 4\sin(2\theta) \] ### Step 4: Find \( x^2 + y^2 \) Using the identity: \[ x^2 + y^2 = (x+y)^2 - 2xy \] We need to find \( xy \). We can find \( xy \) using: \[ xy = \frac{(x+y)^2 - (x-y)^2}{4} \] Calculating \( (x+y)^2 \) and \( (x-y)^2 \): \[ (x+y)^2 = (3 - \cos(4\theta))^2 \] \[ (x-y)^2 = (4\sin(2\theta))^2 \] Substituting these into the equation for \( xy \): \[ xy = \frac{(3 - \cos(4\theta))^2 - (4\sin(2\theta))^2}{4} \] ### Step 5: Final equation Now, we can express the final equation in terms of \( x \) and \( y \): \[ x^2 + y^2 - 8x - 8y + 16 = 0 \] This gives us the final result.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-S1|15 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S2|9 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-01|17 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

If x+y=3-cos 4 theta and x-y=4sin 2 theta ,the value of sqrtx+sqrty is equal to

If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((dy)/(dx))^(2)|at theta=(pi)/(2) is:

Knowledge Check

  • Let x= cos theta and y = sin theta for any real value theta . Then x^(2)+y^(2)=

    A
    `-1`
    B
    0
    C
    1
    D
    It cannot be determined from the information given
  • Similar Questions

    Explore conceptually related problems

    If x = 4 + 5cos theta and y = 3 + 5 sin theta , show that the locus of the point (x, y) as theta varies, is a circle. Find the centre and radius of the circle.

    Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

    If x=cos^(7)theta and y=sin theta and (d^(3)x)/(dy^(3))=105/a sin (a theta) then value of a is

    If x+iy=3/(2+costheta +i sin theta) , then show that x^2+y^2=4x-3

    If x=3+2cos theta, y=5+2sin theta then the locus of the point (x,y) is a circle with centre and radius

    If x = a cos^(3) theta, y = a sin ^(3) theta then sqrt(1+((dy)/(dx))^(2)) =?

    If x = X cos theta- Y sin theta, y = X sin theta + Y cos theta and x^2 + 4 x y + y^2 = A X^2 + B Y^2 0 <= theta <= pi/2, then