Home
Class 12
MATHS
If a leq 3 cos (theta+pi/3)+5cos theta...

If `a leq 3 cos (theta+pi/3)+5cos theta+3 leq b`, find `a and b`, where a is the minimum value & b is the If a maximum value.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value \( a \) and the maximum value \( b \) of the expression \( 3 \cos(\theta + \frac{\pi}{3}) + 5 \cos \theta + 3 \). ### Step 1: Rewrite the expression The expression can be rewritten using the cosine addition formula: \[ \cos(\theta + \frac{\pi}{3}) = \cos \theta \cos \frac{\pi}{3} - \sin \theta \sin \frac{\pi}{3} \] Substituting the values \( \cos \frac{\pi}{3} = \frac{1}{2} \) and \( \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \), we have: \[ 3 \cos(\theta + \frac{\pi}{3}) = 3 \left( \frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta \right) = \frac{3}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta \] ### Step 2: Combine like terms Now, we can combine this with the rest of the expression: \[ \frac{3}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta + 5 \cos \theta + 3 \] Combining the cosine terms: \[ \left( \frac{3}{2} + 5 \right) \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta + 3 = \frac{13}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta + 3 \] ### Step 3: Identify coefficients Let \( A = -\frac{3\sqrt{3}}{2} \) and \( B = \frac{13}{2} \). We can now express the function in the form: \[ f(\theta) = A \sin \theta + B \cos \theta + 3 \] ### Step 4: Find the maximum and minimum values The maximum and minimum values of \( A \sin \theta + B \cos \theta \) can be found using the formula: \[ \sqrt{A^2 + B^2} \] Calculating \( A^2 \) and \( B^2 \): \[ A^2 = \left(-\frac{3\sqrt{3}}{2}\right)^2 = \frac{27}{4}, \quad B^2 = \left(\frac{13}{2}\right)^2 = \frac{169}{4} \] Now, adding these: \[ A^2 + B^2 = \frac{27}{4} + \frac{169}{4} = \frac{196}{4} = 49 \] Thus, \[ \sqrt{A^2 + B^2} = \sqrt{49} = 7 \] ### Step 5: Determine maximum and minimum values The maximum value of \( f(\theta) \) is: \[ \text{Maximum} = 7 + 3 = 10 \] The minimum value of \( f(\theta) \) is: \[ \text{Minimum} = -7 + 3 = -4 \] ### Conclusion Thus, the values of \( a \) and \( b \) are: \[ a = -4, \quad b = 10 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-JM|7 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX -JA|8 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S1|15 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

if a cos theta + b sin theta = c. then what is the value of a sin theta -b cos theta

If sin theta =sqrt(3) cos theta, -pi lt theta lt 0 , then the value of theta is

Given : 4 sintheta = 3 cos theta , find the value of: cos theta

Given : 4 sintheta = 3 cos theta , find the value of: sin theta

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

If a cos theta-b sin theta = c, then find the value of a sin theta + b cos theta.

Express 2cos theta + 3 sin theta in the form r cos ( theta - alpha ), where r is positive, stating the values of r and alpha. What is the maximum value of 2 cos theta + 3 sin theta ?

If A = 4 sin theta + cos^(2) theta , which of the following is not true ? (A) Maximum value of A is 5 . (B) Minimum value of A is -4 (C) Maximum value of A occurs when sin theta = 1//2 (D) Minimum value of A occurs when sin theta = 1 .

If a sin x+b cos(x+theta)+b cos(x-theta)=d, then the minimum value of |cos theta| is equal to

If |z+4| leq 3 then the maximum value of |z+1| is