Home
Class 12
MATHS
The value of cosec(pi/18)-sqrt3sec(pi/18...

The value of `cosec(pi/18)-sqrt3sec(pi/18)` is a

A

surd

B

rational which is not integral

C

negative integer

D

natural number.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \csc\left(\frac{\pi}{18}\right) - \sqrt{3} \sec\left(\frac{\pi}{18}\right) \), we can follow these steps: ### Step 1: Rewrite the trigonometric functions Recall the definitions of cosecant and secant: \[ \csc(x) = \frac{1}{\sin(x)} \quad \text{and} \quad \sec(x) = \frac{1}{\cos(x)} \] Thus, we can rewrite the expression: \[ \csc\left(\frac{\pi}{18}\right) - \sqrt{3} \sec\left(\frac{\pi}{18}\right) = \frac{1}{\sin\left(\frac{\pi}{18}\right)} - \sqrt{3} \cdot \frac{1}{\cos\left(\frac{\pi}{18}\right)} \] ### Step 2: Find a common denominator The common denominator for the two fractions is \( \sin\left(\frac{\pi}{18}\right) \cos\left(\frac{\pi}{18}\right) \): \[ = \frac{\cos\left(\frac{\pi}{18}\right) - \sqrt{3} \sin\left(\frac{\pi}{18}\right)}{\sin\left(\frac{\pi}{18}\right) \cos\left(\frac{\pi}{18}\right)} \] ### Step 3: Simplify the numerator Now we simplify the numerator: \[ \cos\left(\frac{\pi}{18}\right) - \sqrt{3} \sin\left(\frac{\pi}{18}\right) \] We can recognize this as a sine subtraction formula. Specifically, we can express it in the form: \[ R \sin\left(\theta - \phi\right) \] where \( R = 2 \) and \( \phi = \frac{\pi}{6} \) (since \( \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \) and \( \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \)). ### Step 4: Express in terms of sine Using the sine subtraction formula: \[ \cos\left(\frac{\pi}{18}\right) - \sqrt{3} \sin\left(\frac{\pi}{18}\right) = 2 \left(\sin\left(\frac{\pi}{6}\right) \cos\left(\frac{\pi}{18}\right) - \cos\left(\frac{\pi}{6}\right) \sin\left(\frac{\pi}{18}\right)\right) \] This simplifies to: \[ 2 \sin\left(\frac{\pi}{6} - \frac{\pi}{18}\right) = 2 \sin\left(\frac{3\pi}{18} - \frac{\pi}{18}\right) = 2 \sin\left(\frac{2\pi}{18}\right) = 2 \sin\left(\frac{\pi}{9}\right) \] ### Step 5: Substitute back into the expression Now substituting back into our expression: \[ \frac{2 \sin\left(\frac{\pi}{9}\right)}{\sin\left(\frac{\pi}{18}\right) \cos\left(\frac{\pi}{18}\right)} \] ### Step 6: Use the double angle identity Using the double angle identity for sine: \[ \sin(2x) = 2 \sin(x) \cos(x) \] we have: \[ \sin\left(\frac{\pi}{9}\right) = \sin\left(2 \cdot \frac{\pi}{18}\right) = 2 \sin\left(\frac{\pi}{18}\right) \cos\left(\frac{\pi}{18}\right) \] Thus, the expression simplifies to: \[ \frac{2 \sin\left(\frac{\pi}{9}\right)}{\frac{1}{2} \sin\left(\frac{\pi}{9}\right)} = 4 \] ### Conclusion The value of \( \csc\left(\frac{\pi}{18}\right) - \sqrt{3} \sec\left(\frac{\pi}{18}\right) \) is \( 4 \), which is a natural number.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-S1|15 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S2|9 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-01|17 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

The value of cos e cpi/(18)-4sin(7pi)/(18) is

The value of 4 cos(pi/10)-3 sec(pi/10)- 2 tan(pi/10) is equal to

The value of "cosec".(pi)/(18)-4 sin""(7pi)/(18) is ____________

The exact value of cos((2pi)/28)cosec((3pi)/28)+cos((6pi)/28)cosec((9pi)/28)+cos((18pi)/28)cosec((27pi)/28)

If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3)( theta + (4pi)/(3)) then the value of f((pi)/(18)) + f((7pi)/(18)) is ___________.

Find the value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+sec^(-1)(-sqrt2) .

The value of sin^(-1)(-sqrt(3)//2)\ is- a. -pi//3 b. -2pi//3 c. 4pi//3 d. 5pi//3

The value of sin(pi/18)+sin(pi/9)+sin((2pi)/9)+sin((5pi)/18) is

Find the value of: 3sin(pi/6) sec(pi/3) 4sin((5pi)/6) cot(pi/4)

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6