Home
Class 12
MATHS
If vecA=3hati+4hatj and vecB=6hati+8hat...

If `vecA=3hati+4hatj` and `vecB=6hati+8hatj`, select correct alternatives :- `(i) vecA.vecB=50" "(ii)2A=B` `(iii)hatA=hatB" "(iv) hatAxxvecB=vec0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze the given vectors and check each of the statements provided. Given: \[ \vec{A} = 3\hat{i} + 4\hat{j} \] \[ \vec{B} = 6\hat{i} + 8\hat{j} \] ### Step 1: Calculate the dot product \(\vec{A} \cdot \vec{B}\) The dot product of two vectors \(\vec{A} = a_1\hat{i} + a_2\hat{j}\) and \(\vec{B} = b_1\hat{i} + b_2\hat{j}\) is given by: \[ \vec{A} \cdot \vec{B} = a_1b_1 + a_2b_2 \] Substituting the values: \[ \vec{A} \cdot \vec{B} = (3)(6) + (4)(8) = 18 + 32 = 50 \] ### Step 2: Check if \(2\vec{A} = \vec{B}\) To check if \(2\vec{A} = \vec{B}\), we calculate \(2\vec{A}\): \[ 2\vec{A} = 2(3\hat{i} + 4\hat{j}) = 6\hat{i} + 8\hat{j} \] Since \(2\vec{A} = \vec{B}\), this statement is true. ### Step 3: Check if \(\hat{A} = \hat{B}\) The unit vector \(\hat{A}\) is given by: \[ \hat{A} = \frac{\vec{A}}{|\vec{A}|} \] where \(|\vec{A}|\) is the magnitude of \(\vec{A}\): \[ |\vec{A}| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] Thus, \[ \hat{A} = \frac{3\hat{i} + 4\hat{j}}{5} \] Similarly, for \(\vec{B}\): \[ |\vec{B}| = \sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \] Thus, \[ \hat{B} = \frac{6\hat{i} + 8\hat{j}}{10} = \frac{3\hat{i} + 4\hat{j}}{5} \] Since \(\hat{A} = \hat{B}\), this statement is also true. ### Step 4: Check if \(\hat{A} \times \vec{B} = \vec{0}\) The cross product \(\hat{A} \times \vec{B}\) can be calculated as follows: \[ \hat{A} = \frac{3\hat{i} + 4\hat{j}}{5} \] \[ \vec{B} = 6\hat{i} + 8\hat{j} \] The cross product of two vectors in the plane (2D) is zero because they are parallel. Therefore: \[ \hat{A} \times \vec{B} = \vec{0} \] ### Conclusion The correct alternatives are: 1. \(\vec{A} \cdot \vec{B} = 50\) (True) 2. \(2\vec{A} = \vec{B}\) (True) 3. \(\hat{A} = \hat{B}\) (True) 4. \(\hat{A} \times \vec{B} = \vec{0}\) (True)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If vecA = 3hati - 4hatj and vecB = -hati - 4hatj , calculate the direction of vecA- vecB .

If vecA=3hati-4hatj and vecB=- hati- 4hatj , calculate the direction of vecA+vecB

If vecA= 3hati+2hatj and vecB= 2hati+ 3hatj-hatk , then find a unit vector along (vecA-vecB) .

If vecA=4hati-3hatj and vecB=6hati+8hatj then magnitude and direction of vecA+vecB will be

If vecA=4hati-3hatj and vecB=6hati+8hatj then magnitude and direction of vecA+vecB will be

If veca=hati+hatj,vecb=hati-hatj , then veca.vecb=

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If vecA=2hati-3hatj+hatk and vecB=3hati+2hatj. Find vecA.vecB and vecAxxvecB

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is