Home
Class 12
MATHS
sum(k=0)^5(1)/(sin[(K+1)theta]sin[(K+2)t...

` sum_(k=0)^5(1)/(sin[(K+1)theta]sin[(K+2)theta])` can be equal to

A

`(cot2theta-cot7theta)/(sin theta)`

B

`(tan2theta-tan7theta)/(sin2theta)`

C

a positive number

D

a negative number

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{k=0}^{5} \frac{1}{\sin((k+1)\theta) \sin((k+2)\theta)} \), we can use a trigonometric identity to simplify the expression. ### Step-by-Step Solution: 1. **Write the Summation**: \[ S = \sum_{k=0}^{5} \frac{1}{\sin((k+1)\theta) \sin((k+2)\theta)} \] 2. **Use the Identity**: We can use the identity: \[ \sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)] \] However, in this case, we can also use the identity: \[ \frac{1}{\sin A \sin B} = \frac{1}{\sin A} \cdot \frac{1}{\sin B} \] 3. **Rewrite the Terms**: Each term in the summation can be rewritten using the cotangent function: \[ \frac{1}{\sin((k+1)\theta) \sin((k+2)\theta)} = \frac{1}{\sin((k+1)\theta)} \cdot \frac{1}{\sin((k+2)\theta)} \] 4. **Apply the Sum**: We can express the sum as: \[ S = \sum_{k=0}^{5} \left( \cot((k+1)\theta) - \cot((k+2)\theta) \right) \] 5. **Evaluate the Telescoping Series**: Notice that this is a telescoping series: \[ S = \left( \cot(\theta) - \cot(7\theta) \right) \] 6. **Final Expression**: Thus, the final result of the sum is: \[ S = \cot(\theta) - \cot(7\theta) \] ### Conclusion: The sum \( \sum_{k=0}^{5} \frac{1}{\sin((k+1)\theta) \sin((k+2)\theta)} \) simplifies to \( \cot(\theta) - \cot(7\theta) \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If theta in (pi//4, pi//2) and sum_(n=1)^(oo)(1)/(tan^(n)theta)=sin theta + cos theta , then the value of tan theta is

The value of int_(0)^(pi//2)(log(1+x sin^(2) theta))/(sin^(2)theta)d theta,xge0 is equal to

Knowledge Check

  • sum_(k=0)^(5)(-1)^(k)2k

    A
    `-10`
    B
    `-6`
    C
    0
    D
    6
  • Similar Questions

    Explore conceptually related problems

    Q. The value of is equal sum_(k=1)^13(1/(sin(pi/4+(k-1)pi/6)sin(pi/4+k pi/6)) is equal

    If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

    If theta lies in the second quadrant. Then the value of sqrt((1-sin theta)/(1+sin theta))+sqrt((1+sin theta)/(1-sin theta)) is equal to :

    If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :

    The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to

    The value of Delta=|(1,sin 3theta, sin^(3)theta),(2cos theta, sin 6 theta, sin^(3)2 theta),(4cos^(2)theta-1,sin 9 theta, sin^(3)3theta)| equal to

    int_(0)^(1) (sin theta (cos^(2) theta- cos^(2) pi//5) (cos^(2) theta - cos^(2) 2 pi //5))/(sin 5 theta)d theta