Home
Class 12
MATHS
sum(k=0)^5(1)/(sin[(K+1)theta]sin[(K+2)t...

` sum_(k=0)^5(1)/(sin[(K+1)theta]sin[(K+2)theta])` can be equal to

A

`(cot2theta-cot7theta)/(sin theta)`

B

`(tan2theta-tan7theta)/(sin2theta)`

C

a positive number

D

a negative number

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{k=0}^{5} \frac{1}{\sin((k+1)\theta) \sin((k+2)\theta)} \), we can use a trigonometric identity to simplify the expression. ### Step-by-Step Solution: 1. **Write the Summation**: \[ S = \sum_{k=0}^{5} \frac{1}{\sin((k+1)\theta) \sin((k+2)\theta)} \] 2. **Use the Identity**: We can use the identity: \[ \sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)] \] However, in this case, we can also use the identity: \[ \frac{1}{\sin A \sin B} = \frac{1}{\sin A} \cdot \frac{1}{\sin B} \] 3. **Rewrite the Terms**: Each term in the summation can be rewritten using the cotangent function: \[ \frac{1}{\sin((k+1)\theta) \sin((k+2)\theta)} = \frac{1}{\sin((k+1)\theta)} \cdot \frac{1}{\sin((k+2)\theta)} \] 4. **Apply the Sum**: We can express the sum as: \[ S = \sum_{k=0}^{5} \left( \cot((k+1)\theta) - \cot((k+2)\theta) \right) \] 5. **Evaluate the Telescoping Series**: Notice that this is a telescoping series: \[ S = \left( \cot(\theta) - \cot(7\theta) \right) \] 6. **Final Expression**: Thus, the final result of the sum is: \[ S = \cot(\theta) - \cot(7\theta) \] ### Conclusion: The sum \( \sum_{k=0}^{5} \frac{1}{\sin((k+1)\theta) \sin((k+2)\theta)} \) simplifies to \( \cot(\theta) - \cot(7\theta) \).
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

sum_(k=0)^(5)(-1)^(k)2k

If theta in (pi//4, pi//2) and sum_(n=1)^(oo)(1)/(tan^(n)theta)=sin theta + cos theta , then the value of tan theta is

The value of int_(0)^(pi//2)(log(1+x sin^(2) theta))/(sin^(2)theta)d theta,xge0 is equal to

Q. The value of is equal sum_(k=1)^13(1/(sin(pi/4+(k-1)pi/6)sin(pi/4+k pi/6)) is equal

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If theta lies in the second quadrant. Then the value of sqrt((1-sin theta)/(1+sin theta))+sqrt((1+sin theta)/(1-sin theta)) is equal to :

If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :

The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to

The value of Delta=|(1,sin 3theta, sin^(3)theta),(2cos theta, sin 6 theta, sin^(3)2 theta),(4cos^(2)theta-1,sin 9 theta, sin^(3)3theta)| equal to

int_(0)^(1) (sin theta (cos^(2) theta- cos^(2) pi//5) (cos^(2) theta - cos^(2) 2 pi //5))/(sin 5 theta)d theta

ALLEN-TEST PAPER-MATHS
  1. If sin^(2)x - (m - 3)sin x + m=0 "has real roots then which of the fo...

    Text Solution

    |

  2. If x(1),x(2) "are two solutions of" X^(lnx^(2) )=e^(18) "then product...

    Text Solution

    |

  3. sum(k=0)^5(1)/(sin[(K+1)theta]sin[(K+2)theta]) can be equal to

    Text Solution

    |

  4. Ifx^(2)+y^(2)=4 and a^(2)+b^(2)=9 then

    Text Solution

    |

  5. If both roots are less than 3 then 'a' belongs to

    Text Solution

    |

  6. If ytan(θ− π/6)=xtan(θ+ 2π/3) , then (y+x)/(y-x) =

    Text Solution

    |

  7. For x∈(0,π) , the equation sinx+2sin2x−sin3x=3 , has

    Text Solution

    |

  8. If 32tan ^8 θ=2cos^2 α−3cosα and 3cos2θ=1 then the general value...

    Text Solution

    |

  9. If logx, logsqrt(6-2x),log(x-1) re in A.P .then value of (x)/(3) is

    Text Solution

    |

  10. The general solution of sinx−3sin2x+sin3x=cosx−3cos2x+cos3x is

    Text Solution

    |

  11. The sum of 'n' terms of an A.P is 715.If first term is incrased by 1, ...

    Text Solution

    |

  12. The value of k for which equations x^(2)+(2k-6)x+7-3k=0 and x^(2)+(2k-...

    Text Solution

    |

  13. If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x), then the val...

    Text Solution

    |

  14. The least integral value of lambda for which the expression (lambdax^(...

    Text Solution

    |

  15. Prove that : sin^(-1)(5/13) +cos ^(−1)(3/5)=tan (−1)(63/16) ​

    Text Solution

    |

  16. If f(x)=x+tanx and f is inverse of g, then g ′(x) is equal ...

    Text Solution

    |

  17. 1/(i-1) + 1/(i+1) is a. purely imaginary b. purely rational number....

    Text Solution

    |

  18. |{:(,"List-I(Atom/Ions)",,"List-II(Electron Affinity in eV/atom and co...

    Text Solution

    |

  19. |{:(,"List-I(Orbitals)",,"List-II"),(,"(Approach axis is z-axis)",,"(T...

    Text Solution

    |

  20. Which of the following values of a and b will make a(sin^(6)theta+cos^...

    Text Solution

    |