Home
Class 11
PHYSICS
Find the values of : (i) tan (-30^(@)...

Find the values of :
(i) `tan (-30^(@))`
(ii) `sin 120^(@)`
(iii) `sin 135^(@)`
(iv) `cos 150^(@)`
(v) `sin 270^(@)`
(vi) `cos 270^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step: ### (i) Find `tan (-30°)` 1. **Use the property of tangent**: \[ \tan(-\theta) = -\tan(\theta) \] Therefore, \[ \tan(-30°) = -\tan(30°) \] 2. **Find `tan(30°)`**: \[ \tan(30°) = \frac{1}{\sqrt{3}} \] 3. **Substitute back**: \[ \tan(-30°) = -\frac{1}{\sqrt{3}} \] **Final Answer**: \[ \tan(-30°) = -\frac{1}{\sqrt{3}} \] --- ### (ii) Find `sin(120°)` 1. **Use the sine addition formula**: \[ \sin(120°) = \sin(90° + 30°) \] 2. **Apply the sine property**: \[ \sin(90° + \theta) = \cos(\theta) \] Thus, \[ \sin(120°) = \cos(30°) \] 3. **Find `cos(30°)`**: \[ \cos(30°) = \frac{\sqrt{3}}{2} \] **Final Answer**: \[ \sin(120°) = \frac{\sqrt{3}}{2} \] --- ### (iii) Find `sin(135°)` 1. **Use the sine addition formula**: \[ \sin(135°) = \sin(90° + 45°) \] 2. **Apply the sine property**: \[ \sin(90° + \theta) = \cos(\theta) \] Thus, \[ \sin(135°) = \cos(45°) \] 3. **Find `cos(45°)`**: \[ \cos(45°) = \frac{1}{\sqrt{2}} \] **Final Answer**: \[ \sin(135°) = \frac{1}{\sqrt{2}} \] --- ### (iv) Find `cos(150°)` 1. **Use the cosine addition formula**: \[ \cos(150°) = \cos(90° + 60°) \] 2. **Apply the cosine property**: \[ \cos(90° + \theta) = -\sin(\theta) \] Thus, \[ \cos(150°) = -\sin(60°) \] 3. **Find `sin(60°)`**: \[ \sin(60°) = \frac{\sqrt{3}}{2} \] 4. **Substitute back**: \[ \cos(150°) = -\frac{\sqrt{3}}{2} \] **Final Answer**: \[ \cos(150°) = -\frac{\sqrt{3}}{2} \] --- ### (v) Find `sin(270°)` 1. **Use the sine addition formula**: \[ \sin(270°) = \sin(180° + 90°) \] 2. **Apply the sine property**: \[ \sin(180° + \theta) = -\sin(\theta) \] Thus, \[ \sin(270°) = -\sin(90°) \] 3. **Find `sin(90°)`**: \[ \sin(90°) = 1 \] 4. **Substitute back**: \[ \sin(270°) = -1 \] **Final Answer**: \[ \sin(270°) = -1 \] --- ### (vi) Find `cos(270°)` 1. **Use the cosine addition formula**: \[ \cos(270°) = \cos(180° + 90°) \] 2. **Apply the cosine property**: \[ \cos(180° + \theta) = -\cos(\theta) \] Thus, \[ \cos(270°) = -\cos(90°) \] 3. **Find `cos(90°)`**: \[ \cos(90°) = 0 \] 4. **Substitute back**: \[ \cos(270°) = -0 = 0 \] **Final Answer**: \[ \cos(270°) = 0 \] ---

Let's solve the given problems step by step: ### (i) Find `tan (-30°)` 1. **Use the property of tangent**: \[ \tan(-\theta) = -\tan(\theta) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 2|3 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 3|6 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise EXERCISE-IV ASSERTION & REASON|11 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

Find the value of (i) cos(-60^(@)) " " (ii) tan(210^(@))" " (iii) sin (300^(@))" " (iv) cos(120^(@))

Find the value of : (i) sin 30^(@)-cos 60^(@) (ii) sin 0^(@)+cos 0^(@)

Find the value of : (i) sin 30^(@)+cos 60^(@) (ii) sin 0^(@)-cos 0^(@)

Find the value of : sin30^(@)cos30^(@)

Find the value of : sin30^(@)cos30^(@)

Find the value of (i) sin 22^(@) 30' (ii) cos 22^(@) 30' (iii) tan 22^(@) 30'

Find the approximate values of (i) sin 1^(@) (ii) tan 2^(@) (iii) cos 1^(@) .

Calculate the value of (i) sin 15^(@) " "(ii) cos 15^(@)" "(iii) tan 15^(@) (iv) sin 75^(@) " "(v) cos 75^(@) " "(vi) tan 75^(@)

Find the value of 2sin30^(@)cos30^(@) .

Find the value of (a) cos 120^(@) (b) sin 240^(@) (c) tan (-60^(@)) (d) cot 300^(@) (e) tan 330^(@) (f) cos (-60)^(@) (g) sin (-150)^(@) (h) cos ( -120)^(@)