Home
Class 11
PHYSICS
Find (dy)/(dx) for the following : (i)...

Find `(dy)/(dx)` for the following :
(i) `y=x^(7//2)` (ii) `y=x^(-3)`
`(iii) y=x` (iv) `y=x^(5)+x^(3)+4x^(1//2)+7`
(v) `y=5x^(4)+6x^(3//2)+9x` (vi) `y=ax^(2)+bx+C`
`(Vii) `y=3x^(5)-3x-1/x`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the given functions, we will use the power rule of differentiation, which states that if \(y = x^n\), then \(\frac{dy}{dx} = n \cdot x^{n-1}\). ### Step-by-Step Solutions: 1. **For \(y = x^{7/2}\)**: \[ \frac{dy}{dx} = \frac{7}{2} x^{7/2 - 1} = \frac{7}{2} x^{5/2} \] 2. **For \(y = x^{-3}\)**: \[ \frac{dy}{dx} = -3 x^{-3 - 1} = -3 x^{-4} \] 3. **For \(y = x\)**: \[ \frac{dy}{dx} = 1 \cdot x^{1 - 1} = 1 \cdot x^0 = 1 \] 4. **For \(y = x^5 + x^3 + 4x^{1/2} + 7\)**: \[ \frac{dy}{dx} = 5x^{4} + 3x^{2} + 4 \cdot \frac{1}{2} x^{-1/2} + 0 = 5x^{4} + 3x^{2} + 2x^{-1/2} \] 5. **For \(y = 5x^4 + 6x^{3/2} + 9x\)**: \[ \frac{dy}{dx} = 20x^{3} + 6 \cdot \frac{3}{2} x^{1/2} + 9 = 20x^{3} + 9x^{1/2} + 9 \] 6. **For \(y = ax^2 + bx + C\)**: \[ \frac{dy}{dx} = 2ax + b \] 7. **For \(y = 3x^5 - 3x - \frac{1}{x}\)**: \[ \frac{dy}{dx} = 15x^{4} - 3 + \frac{1}{x^2} = 15x^{4} - 3 + x^{-2} \] ### Summary of Results: - (i) \(\frac{dy}{dx} = \frac{7}{2} x^{5/2}\) - (ii) \(\frac{dy}{dx} = -3 x^{-4}\) - (iii) \(\frac{dy}{dx} = 1\) - (iv) \(\frac{dy}{dx} = 5x^{4} + 3x^{2} + 2x^{-1/2}\) - (v) \(\frac{dy}{dx} = 20x^{3} + 9x^{1/2} + 9\) - (vi) \(\frac{dy}{dx} = 2ax + b\) - (vii) \(\frac{dy}{dx} = 15x^{4} - 3 + x^{-2}\)

To find \(\frac{dy}{dx}\) for the given functions, we will use the power rule of differentiation, which states that if \(y = x^n\), then \(\frac{dy}{dx} = n \cdot x^{n-1}\). ### Step-by-Step Solutions: 1. **For \(y = x^{7/2}\)**: \[ \frac{dy}{dx} = \frac{7}{2} x^{7/2 - 1} = \frac{7}{2} x^{5/2} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 4|1 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 5|1 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 2|3 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

Find dervatives of the following functions: (i) y=2x^(3) , (ii) y=4/x , (iii) y=3e^(x) , (iv) y=6 ln x , (v) y=5 sin x

Find (dy)/(dx) if y = 5x^(4) + 6x^(3//2) + 9x .

Find (dy)/(dx), when (i) y=sqrt(x) (ii) y=x^(5)+x^(4)+7 (iii) y=x^(2)+4x^(-1//2)-3x^(-2)

Find the degree of each of the following polynomials : (i) 3x^(4)-x^(2)+8 " " (ii) y^(2)-5y+7 " " (iii) 3x+4 " " (iv) 3 (v) x-2x^(2)+5x^(7) " " (vi) 2y^(2)-5y^(6)+1 " "(vii) x^(3)-1 " " (viii) 3x+5x^(5)+1

Solve graphically and compare your answer with algebraic solution either by factorization or formula method: (i) y=x^(2)-5x+6 (ii) y=-x^(2)+2x+3 (iii) y=x^(2)-4x+4 (iv) y=x^(2)-x-6 (v) y=x^(2)-6x+9 (vi) y=-x^(2)-x+12 (vii) y=x^(2)-4x+5=0 (viii) y=x^(2)+2x+2=0 .

Find the following products: (i) (x+2)(x+3) (ii) (x+7)(x-2) (iii) y-4)(y-3) (iv) (y-7)(y+3) (vi) (2x-3)(2x+5) (vii) (3x+4)(3x-5)

Find the following products: (6x)/5(x^3+y^3) (ii) x y(x^3-y^3) (iii) 0. 1 y(0. 1 x^5+0. 1 y)

Find the following products: (i) (z^2+2)(z^2-3) (ii) (3x-4y)(2x-4y) (iii) (3x^2-4x y)(3x^2-3x y) (iv) (x+1/5)(x+5)

Factorise the following : (i) 9a^(2)-b^(2) " " (ii) 81x^(3)-x " " (iii) x^(3)-49xy^(2) " " (iv) a^(2)-(b-c)^(2) (v) (x-y)^(3)-x+y " " (vi)x^(2)y^(2)+1-x^(2)-y^(2) " " (vii) 25(a+b)^(2)-49(a-b)^(2) " " (viii) xy^(5)-x^(5)y (ix) x^(8)-256 " " (x) x^(8)-81y^(8)

Find the following products: (i) 7/5x^2y(3/5x y^2+2/5x) (ii) 4/3a(a^2+b^2-3c^2)