Home
Class 12
PHYSICS
A disc of radius r is cut from a larger ...

A disc of radius r is cut from a larger disc of radius 4r in such a way that the edge of the hole touches the edge of the disc. Locate the centre of mass of the residual disc.

A

`(r)/(5)`

B

`(r)/(4)`

C

`(r)/(2)`

D

`(r)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RACE

    ALLEN|Exercise Basic Maths (ROTATIONAL MOTION)|72 Videos
  • RACE

    ALLEN|Exercise Basic Maths (GRAVITATION)|25 Videos
  • RACE

    ALLEN|Exercise Basic Maths (CIRCULAR MOTION)|17 Videos
  • NEWTONS LAWS OF MOTION

    ALLEN|Exercise EXERCISE-III|28 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN|Exercise Example|1 Videos

Similar Questions

Explore conceptually related problems

A disc of radis R is cut out from a larger disc of radius 2R in such a way that the edge of the hole touches the edge of the disc. Locate the centre of mass of the residual disc.

A disc of radius r is cut from a larger disc of radius 4r in such a way that the edge of the hole touches the edge of the disc. The centre of mass of the residual disc will be a distance from centre of larger disc :-

A disc of radius r is cut from a larger disc of radius 4r in such a way that the edge of the hole touches the edge of the disc. The centre of mass of the residual disc will be a distance from centre of larger disc :-

From a uniform disc of radius R , a circular section of radius R//2 is cut out. The centre of the hole is at R//2 from the centre of the original disc. Locate the centre of mass of the resulting flat body.

A circular hole is cut from a disc of radius 6 cm in such a way that the radius of the hole is 1 cm and the centre of 3 cm from the centre of the disc. The distance of the centre of mass of the remaining part from the centre of the original disc is

Given a uniform disc of mass M and radius R . A small disc of radius R//2 is cut from this disc in such a way that the distance between the centres of the two discs is R//2 . Find the moment of inertia of the remaining disc about a diameter of the original disc perpendicular to the line connecting the centres of the two discs

A circular disc of radius R is removed from a bigger circular disc of radius 2 R such that the circumferences of the discs coincide. The center of mass of new disc is alpha R from the center of the bigger disc. The value of alpha is

Figure-4.11 shows a circular a disc of radius R from which a small disc is cut such that the periphery of the small disc touch the large disc and whose radius is R//2 . Find the centre of mass of the remaining part of the disc.

A uniform disc of radius R is put over another unifrom disc of radius 2R of the same thickness and density. The peripheries of the two discs touch each other. Locate the centre of mass of the system.

From a uniform circular disc of mass M and radius R a small circular disc of radius R/2 is removed in such a way that both have a common tangent. Find the distance of centre of mass of remaining part from the centre of original disc.