Home
Class 14
MATHS
If x^(log(7)x)gt7 where x gt 0. Then wha...

If `x^(log_(7)x)gt7` where `x gt 0`. Then what is the domain of x ?

A

`x in (0,oo)`

B

`x in (1//7//7)`,

C

`x in (0.1//7) cup(7,oo)`

D

`x in (1//7,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( x^{\log_{7}x} > 7 \) where \( x > 0 \), we can follow these steps: ### Step 1: Rewrite the Inequality We start with the given inequality: \[ x^{\log_{7}x} > 7 \] We can rewrite \( 7 \) as \( 7^1 \) to facilitate comparison: \[ x^{\log_{7}x} > 7^1 \] ### Step 2: Take Logarithm on Both Sides Taking logarithm base 7 on both sides, we have: \[ \log_{7}(x^{\log_{7}x}) > \log_{7}(7) \] Using the property of logarithms, this simplifies to: \[ \log_{7}x \cdot \log_{7}x > 1 \] or \[ (\log_{7}x)^2 > 1 \] ### Step 3: Solve the Quadratic Inequality The inequality \( (\log_{7}x)^2 > 1 \) implies two cases: 1. \( \log_{7}x > 1 \) 2. \( \log_{7}x < -1 \) #### Case 1: \( \log_{7}x > 1 \) This means: \[ x > 7^1 \implies x > 7 \] #### Case 2: \( \log_{7}x < -1 \) This means: \[ x < 7^{-1} \implies x < \frac{1}{7} \] ### Step 4: Combine the Results From the two cases, we have: 1. \( x > 7 \) 2. \( x < \frac{1}{7} \) Since \( x > 0 \), we can combine these results to state the domain of \( x \): \[ x \in (0, \frac{1}{7}) \cup (7, \infty) \] ### Final Answer Thus, the domain of \( x \) is: \[ (0, \frac{1}{7}) \cup (7, \infty) \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos
  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos
  • MATRIX

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|91 Videos

Similar Questions

Explore conceptually related problems

If m and n ( m gt n) are the roots of the equation 7(x+2a)^(2) +3a^(2)=5a (7x+23a) where a gt 0 , then what is 3m-n equal to ?

If log_(a)x("where "a gt 1) is positive, then the range of x is ______.

Knowledge Check

  • x^(log_(9)x)gt9 implies

    A
    `xepsilon(0,oo)`
    B
    `xepsilon(0,(1)/(9))uu(9,oo)`
    C
    `xgt1`
    D
    `xlt2`
  • If x^(2) + (1)/( x^(2)) = (7)/( 4) " for " x gt 0 then what is the value of x^(4) + (1)/( x^(4)) ?

    A
    `1`
    B
    `(17)/(16)`
    C
    `(15)/(16)`
    D
    `(51)/(16)`
  • If x ^(2) _ (1)/(x ^(2)) = (7)/(4) for x gt 0 then what is the value of x ^(4) + (1)/(x ^(4)) ?

    A
    1
    B
    `17//16`
    C
    `15//16`
    D
    `51//16`
  • Similar Questions

    Explore conceptually related problems

    If x^2 + 1/x^2 = 7/4 for x gt 0 then what is the value of x^3 + 1/x^3 ?

    If x ^(2) + (1)/( x ^(2)) = (4)/(7) for x gt 0, then what is the value of x^(2) + (1)/(x ^(3)) ?

    If the domain of f (x) =1/picos ^(-1)[log _(3) ((x^(3))/(3))] where, x gt 0 is [a,b] and the range of f (x) is [c,d], then :

    If ( x^(2) + (1)/( x^(2)))= (7)/( 4) " for " x gt 0 what is the value of ( x^(3) + (1)/( x^(3)))

    x^(log _(5)x) gt 5 implies: