Home
Class 14
MATHS
What is the value of [(i+sqrt(3))/(2)]^(...

What is the value of `[(i+sqrt(3))/(2)]^(2019)+[(i-sqrt(3))/(2)]^(2019)=`

A

1

B

`-1`

C

2i

D

`-2i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{i + \sqrt{3}}{2}\right)^{2019} + \left(\frac{i - \sqrt{3}}{2}\right)^{2019}\), we can follow these steps: ### Step 1: Identify the complex numbers Let: \[ z_1 = \frac{i + \sqrt{3}}{2}, \quad z_2 = \frac{i - \sqrt{3}}{2} \] ### Step 2: Express \(z_1\) and \(z_2\) in polar form We can rewrite \(z_1\) and \(z_2\) in polar form. First, we find the modulus and argument of \(z_1\): \[ |z_1| = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{3}{4} + \frac{1}{4}} = \sqrt{1} = 1 \] The argument \(\theta_1\) can be calculated as: \[ \theta_1 = \tan^{-1}\left(\frac{1/2}{\sqrt{3}/2}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] Thus, we can express \(z_1\) as: \[ z_1 = e^{i\frac{\pi}{6}} \] Now for \(z_2\): \[ |z_2| = \sqrt{\left(-\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{1} = 1 \] The argument \(\theta_2\) is: \[ \theta_2 = \tan^{-1}\left(\frac{1/2}{-\sqrt{3}/2}\right) = \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6} \] Thus, we can express \(z_2\) as: \[ z_2 = e^{-i\frac{\pi}{6}} \] ### Step 3: Raise \(z_1\) and \(z_2\) to the power of 2019 Now we calculate: \[ z_1^{2019} = \left(e^{i\frac{\pi}{6}}\right)^{2019} = e^{i\frac{2019\pi}{6}} = e^{i(336\pi + \frac{3\pi}{6})} = e^{i(336\pi + \frac{\pi}{2})} = e^{i\frac{\pi}{2}} = i \] \[ z_2^{2019} = \left(e^{-i\frac{\pi}{6}}\right)^{2019} = e^{-i\frac{2019\pi}{6}} = e^{-i(336\pi + \frac{3\pi}{6})} = e^{-i(336\pi + \frac{\pi}{2})} = e^{-i\frac{\pi}{2}} = -i \] ### Step 4: Combine the results Now we add \(z_1^{2019}\) and \(z_2^{2019}\): \[ z_1^{2019} + z_2^{2019} = i + (-i) = 0 \] ### Final Answer Thus, the value of \(\left(\frac{i + \sqrt{3}}{2}\right)^{2019} + \left(\frac{i - \sqrt{3}}{2}\right)^{2019}\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

The value of (1+i sqrt(3))^2 =

What is the value of ((-1+i sqrt(3))/(2))^(3n)+((-1-i sqrt(3))/(2))^(3n), where i=sqrt(-1)?

the value of ((-1+sqrt(3)i)/(2))^(3n)+((-1-sqrt(3)i)/(2))^(3n)=

If w is the cube root of unity then find the value ((-1+i sqrt(3))/(2))^(18)+((-1-i sqrt(3))/(2))^(18)

What is the value of ((i+sqrt3)/(-i+sqrt3))^(200)+((i-sqrt3)/(i+sqrt3))^(200)+1 ?

The value of (i+sqrt(3))^(100)+(i-sqrt(3))^(100)+2^(100) is

show that ((sqrt(3)+i)/(2))^(6)+((i-sqrt(3))/(2))^(6)=-2

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. What is the value of [(i+sqrt(3))/(2)]^(2019)+[(i-sqrt(3))/(2)]^(2019)...

    Text Solution

    |

  2. If alpha and beta are the roots f x^(2) + x+1 =0, then what is the val...

    Text Solution

    |

  3. If x=1+i, then what is the value of x^(6) + x^(4) + x^(2) + 1?

    Text Solution

    |

  4. Roots of the equation x^(2017) + x^(2018) +1=0 are

    Text Solution

    |

  5. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  6. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  7. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  8. Which one of the following is correct in respect of the cube roots of ...

    Text Solution

    |

  9. What is the principle argument of ( -1-i) where i = sqrt( - 1).

    Text Solution

    |

  10. Let alpha and beta be real number and z be a complex number. If z^(2) ...

    Text Solution

    |

  11. The number of non-zero integral solution of the equation | 1- 2i|^(x) ...

    Text Solution

    |

  12. If alpha and beta are different complex number of with | beta | = 1, t...

    Text Solution

    |

  13. What is i^(1000) + i^(1001) + i^(1002)+i^(1003) is equal to ( where i ...

    Text Solution

    |

  14. The modulus-argument form of sqrt( 3) + i, where i = sqrt( -1) is

    Text Solution

    |

  15. What is the value of the sum sum(n=2)^(11) ( i^(n) + i^(n+1)), where i...

    Text Solution

    |

  16. The smallest positive integer n for which ((1+i)/( 1-i))^(n) =1, is :

    Text Solution

    |

  17. If | z - ( 4)/( z)| =2, then the maximum value o f |z| is equal to :

    Text Solution

    |

  18. The value of i^(2n) + i^(2n+1) + i^(2n+2) + i^(2n+3), where i = sqrt( ...

    Text Solution

    |

  19. The value of ((-1+isqrt( 3))/(2))^(n) + (( -1-isqrt(3))/(2))^(n) where...

    Text Solution

    |

  20. If 1, omega, omega^(2) are the cube roots of unity, then ( 1+ omega) (...

    Text Solution

    |