Home
Class 14
MATHS
What is the value of [(i+sqrt(3))/(2)]^(...

What is the value of `[(i+sqrt(3))/(2)]^(2019)+[(i-sqrt(3))/(2)]^(2019)=`

A

1

B

`-1`

C

2i

D

`-2i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{i + \sqrt{3}}{2}\right)^{2019} + \left(\frac{i - \sqrt{3}}{2}\right)^{2019}\), we can follow these steps: ### Step 1: Identify the complex numbers Let: \[ z_1 = \frac{i + \sqrt{3}}{2}, \quad z_2 = \frac{i - \sqrt{3}}{2} \] ### Step 2: Express \(z_1\) and \(z_2\) in polar form We can rewrite \(z_1\) and \(z_2\) in polar form. First, we find the modulus and argument of \(z_1\): \[ |z_1| = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{3}{4} + \frac{1}{4}} = \sqrt{1} = 1 \] The argument \(\theta_1\) can be calculated as: \[ \theta_1 = \tan^{-1}\left(\frac{1/2}{\sqrt{3}/2}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] Thus, we can express \(z_1\) as: \[ z_1 = e^{i\frac{\pi}{6}} \] Now for \(z_2\): \[ |z_2| = \sqrt{\left(-\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{1} = 1 \] The argument \(\theta_2\) is: \[ \theta_2 = \tan^{-1}\left(\frac{1/2}{-\sqrt{3}/2}\right) = \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6} \] Thus, we can express \(z_2\) as: \[ z_2 = e^{-i\frac{\pi}{6}} \] ### Step 3: Raise \(z_1\) and \(z_2\) to the power of 2019 Now we calculate: \[ z_1^{2019} = \left(e^{i\frac{\pi}{6}}\right)^{2019} = e^{i\frac{2019\pi}{6}} = e^{i(336\pi + \frac{3\pi}{6})} = e^{i(336\pi + \frac{\pi}{2})} = e^{i\frac{\pi}{2}} = i \] \[ z_2^{2019} = \left(e^{-i\frac{\pi}{6}}\right)^{2019} = e^{-i\frac{2019\pi}{6}} = e^{-i(336\pi + \frac{3\pi}{6})} = e^{-i(336\pi + \frac{\pi}{2})} = e^{-i\frac{\pi}{2}} = -i \] ### Step 4: Combine the results Now we add \(z_1^{2019}\) and \(z_2^{2019}\): \[ z_1^{2019} + z_2^{2019} = i + (-i) = 0 \] ### Final Answer Thus, the value of \(\left(\frac{i + \sqrt{3}}{2}\right)^{2019} + \left(\frac{i - \sqrt{3}}{2}\right)^{2019}\) is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

The value of (1+i sqrt(3))^2 =

What is the value of ((-1+i sqrt(3))/(2))^(3n)+((-1-i sqrt(3))/(2))^(3n), where i=sqrt(-1)?

Knowledge Check

  • What is the value of ((i+sqrt(3))/(-i+sqrt(3)))^(200)+((i-sqrt(3))/(i+sqrt(3)))^(200) +1 ?

    A
    A)`-1`
    B
    B)0
    C
    C)1
    D
    D)2
  • What is the value of ((i+sqrt3)/(-i+sqrt3))^(200)+((i-sqrt3)/(i+sqrt3))^(200)+1 ?

    A
    `-1`
    B
    0
    C
    1
    D
    2
  • The value of ((i+sqrt3^100)/2)+((i-sqrt3^100)/2) is :

    A
    -1
    B
    1
    C
    0
    D
    i
  • Similar Questions

    Explore conceptually related problems

    the value of ((-1+sqrt(3)i)/(2))^(3n)+((-1-sqrt(3)i)/(2))^(3n)=

    If w is the cube root of unity then find the value ((-1+i sqrt(3))/(2))^(18)+((-1-i sqrt(3))/(2))^(18)

    The value of (i+sqrt(3))^(100)+(i-sqrt(3))^(100)+2^(100) is

    show that ((sqrt(3)+i)/(2))^(6)+((i-sqrt(3))/(2))^(6)=-2

    ( i + sqrt(3) )^(100) + (i - sqrt(3))^(100) + 2 ^(100) =