Home
Class 14
MATHS
If 3a=4b=6c and a+b+c=27sqrt(29) then sq...

If `3a=4b=6c` and `a+b+c=27sqrt(29)` then `sqrt(a^(2)+b^(2)+c^(2))` is equal to

A

`87`

B

`3sqrt(29)`

C

`82`

D

`83

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. **Given**: \( 3a = 4b = 6c \) 2. **Given**: \( a + b + c = 27\sqrt{29} \) ### Step 1: Express \( a \), \( b \), and \( c \) in terms of a common variable From the equation \( 3a = 4b \), we can express \( a \) in terms of \( b \): \[ a = \frac{4}{3}b \] From the equation \( 4b = 6c \), we can express \( b \) in terms of \( c \): \[ b = \frac{6}{4}c = \frac{3}{2}c \] Now we can express \( a \) in terms of \( c \): \[ a = \frac{4}{3} \left(\frac{3}{2}c\right) = 2c \] So, we have: \[ a = 2c, \quad b = \frac{3}{2}c, \quad c = c \] ### Step 2: Substitute \( a \), \( b \), and \( c \) into the sum equation Now substitute \( a \), \( b \), and \( c \) into the equation \( a + b + c = 27\sqrt{29} \): \[ 2c + \frac{3}{2}c + c = 27\sqrt{29} \] Combining the terms: \[ 2c + \frac{3}{2}c + 1c = 2c + 1c + \frac{3}{2}c = \left(2 + 1 + \frac{3}{2}\right)c = \left(3 + \frac{3}{2}\right)c = \frac{6}{2}c + \frac{3}{2}c = \frac{9}{2}c \] Thus, we have: \[ \frac{9}{2}c = 27\sqrt{29} \] ### Step 3: Solve for \( c \) To find \( c \), multiply both sides by \( \frac{2}{9} \): \[ c = 27\sqrt{29} \cdot \frac{2}{9} = 6\sqrt{29} \] ### Step 4: Find \( a \) and \( b \) Now substitute \( c \) back to find \( a \) and \( b \): \[ a = 2c = 2 \cdot 6\sqrt{29} = 12\sqrt{29} \] \[ b = \frac{3}{2}c = \frac{3}{2} \cdot 6\sqrt{29} = 9\sqrt{29} \] ### Step 5: Calculate \( \sqrt{a^2 + b^2 + c^2} \) Now we need to calculate \( \sqrt{a^2 + b^2 + c^2} \): \[ a^2 = (12\sqrt{29})^2 = 144 \cdot 29 = 4176 \] \[ b^2 = (9\sqrt{29})^2 = 81 \cdot 29 = 2349 \] \[ c^2 = (6\sqrt{29})^2 = 36 \cdot 29 = 1044 \] Now sum these values: \[ a^2 + b^2 + c^2 = 4176 + 2349 + 1044 = 7569 \] ### Step 6: Take the square root Now take the square root: \[ \sqrt{a^2 + b^2 + c^2} = \sqrt{7569} = 87 \] Thus, the final answer is: \[ \sqrt{a^2 + b^2 + c^2} = 87 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If 3a=4b=6c and a+b+c=27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is (a) 3sqrt(29) (b) 81 (c) 87 (d) None of these

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then a sqrt(1-a^(2))+b sqrt(1-b^(2))+c sqrt(1-c^(2)) is equal to a+b+c( b )a^(2)b^(2)c^(2)2abc(d)4abc

Knowledge Check

  • If3a=4b=6c and a+b+c= 27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is equal to

    A
    87
    B
    `3sqrt(29)`
    C
    82
    D
    83
  • If 3a=4b=6c and a+b+c=27 sqrt(29) , then find sqrt(a^(2)+b^(2)+c^(2)) .

    A
    `3sqrt(29)`
    B
    81
    C
    87
    D
    89
  • If 3a = 4b = 6c and a + b + c = 27 sqrt29 then sqrt(a ^(2) + b ^(2) + c ^(2)) is equal to

    A
    87
    B
    `3sqrt29`
    C
    82
    D
    83
  • Similar Questions

    Explore conceptually related problems

    If a=2b=8c and a+b+c = 13 then the value of (sqrt(a^2+b^2+c^2))/(2c) is: यदि a=2b=8c है, तथा a+b+c = 13 है, तो (sqrt(a^2+b^2+c^2))/(2c) का मान क्या होगा ?

    If 3a=4b=6c and a+b+c=27sqrt29 then sqrt(a^2+b^2+c^2)

    If a=2b=8c and a+b+c=13,then the value of (sqrt(a^(2)+b^(2)+c^(2)))/(2c) is:

    If a, b, c in R^(+) such that a+b+c=27 , then the maximum value of a^(2)b^(3)c^(4) is equal to

    If a=2+sqrt(3)+sqrt(5) and b=3+sqrt(3)-sqrt(5) , then a^(2)+b^(2)-4a-6b-3 is equal to