Home
Class 14
MATHS
sqrt(1+sqrt(1+sqrt(1+…..)))...

`sqrt(1+sqrt(1+sqrt(1+…..)))`

A

equals 1

B

lies between 0 and 1

C

lies between 1 and 2

D

is greater than 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{1 + \sqrt{1 + \sqrt{1 + \ldots}}} \), we can follow these steps: ### Step 1: Define the Expression Let \( x \) be the value of the entire expression: \[ x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \ldots}}} \] This means that: \[ x = \sqrt{1 + x} \] ### Step 2: Square Both Sides To eliminate the square root, we square both sides of the equation: \[ x^2 = 1 + x \] ### Step 3: Rearrange the Equation Rearranging the equation gives us: \[ x^2 - x - 1 = 0 \] ### Step 4: Apply the Quadratic Formula We can solve the quadratic equation \( ax^2 + bx + c = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -1 \), and \( c = -1 \). Plugging in these values: \[ x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] This simplifies to: \[ x = \frac{1 \pm \sqrt{1 + 4}}{2} = \frac{1 \pm \sqrt{5}}{2} \] ### Step 5: Determine the Values of \( x \) Now we have two potential solutions for \( x \): \[ x_1 = \frac{1 + \sqrt{5}}{2} \quad \text{and} \quad x_2 = \frac{1 - \sqrt{5}}{2} \] Calculating \( \sqrt{5} \) gives approximately \( 2.236 \). Therefore: - \( x_1 \approx \frac{1 + 2.236}{2} = \frac{3.236}{2} \approx 1.618 \) - \( x_2 \approx \frac{1 - 2.236}{2} = \frac{-1.236}{2} \approx -0.618 \) ### Step 6: Select the Positive Solution Since \( x \) represents a length (as it is derived from square roots), we discard the negative solution: \[ x = \frac{1 + \sqrt{5}}{2} \approx 1.618 \] ### Conclusion The value of \( \sqrt{1 + \sqrt{1 + \sqrt{1 + \ldots}}} \) is approximately \( 1.618 \), which lies between 1 and 2. Therefore, the correct option is: **Option 3: Between 1 and 2.**
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VII|34 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

sqrt(1+2sqrt(1+2sqrt(1+2sqrt(1+....))))=

x=sqrt(1+2sqrt(1+3sqrt(1+4sqrt(1+...))))

Knowledge Check

  • The differential coefficient of tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))) , is

    A
    `sqrt(1-x^2)`
    B
    `1/(sqrt(1-x^2))`
    C
    `1/(2sqrt(1-x^2))`
    D
    x
  • Similar Questions

    Explore conceptually related problems

    6 + log_(1/4) (1/sqrt(2))[sqrt(1-(1/sqrt(2))sqrt(1-(1/sqrt(2))sqrt(1-(1/sqrt(2)))]

    Find the value of sqrt(1+2sqrt(1+2sqrt(1+2sqrt(1+......))))

    Explain the fallacy : -1 =(i xx i)=sqrt(-1)xx sqrt(-1) = sqrt((-1)xx(-1))=sqrt(1) = 1 .

    Prove that : tan^(-1) [ (sqrt(1+z) +sqrt(1-z))/(sqrt(1+z) -sqrt(1-z))] = pi/4 +1/2 cos^(-1) z

    Prove that : cot^(-1) ((sqrt(1+x) -sqrt(1-x))/(sqrt(1+x) +sqrt(1-x))) = pi/4 +1/2 cos^(-1) x

    Prove that sqrt(-1-sqrt(-1-sqrt1-… prop=w or w^2 .

    tan^(-1)((sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))