Home
Class 12
MATHS
If A=[{:(1,2,2),(2,1,2),(2,2,1):}], find...

If `A=[{:(1,2,2),(2,1,2),(2,2,1):}]`, find `A^(-1)` and hence prove that `A^(2)-4A-5I=0`.

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(5)[{:(-3,2,2),(2,-3,2),(2,2,-3):}]`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise (Question carrying 2 marks)|21 Videos
  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 4 MARKS|8 Videos
  • DIFFERENTAL QUATIONS

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 4 MARKS|41 Videos

Similar Questions

Explore conceptually related problems

If A = {:[(1,1,-2),(2,1,-3),(4,5,6)] , find |A|.

If A= [[1,2,2],[2,1,2],[2,2,1]] , find A^2-4A-5I=O

If A=[{:(1,2,2),(2,1,2),(2,2,1):}] , prove that A^(2)-4A-5I=0 . Hence find A^(-1) .

If A={:[(1,2,2),(2,1,2),(2,2,1)] , prove thst A^2-4A-5I = O and hence, obtain A^-1 .

If A=[{:(2,0,1),(2,1,3),(1,-1,0):}] find A^(2)-5A+4I and find a matrix X such that A^(2)-5A+4I+X=O

If A = [(3,-4,2),(2,3,5),(1,0,1)]"find A"^(-1) and hence solve the equations 3x - 4y + 2z = -1, 2x + 3y + 5z = 7, x + z = 2 .

If A = [(3,-4,2),(2,3,5),(1,0,1)]"find A"^(-1) and hence solve the equations 3x - 4y + 2z = -1, 2x + 3y + 5z = 7, x + z = 2 .

Find the adjoint of the matrix A = [(-1,-2,-2),(2,1,-2),(2,-2,1)] and hence show that A (AdjA) = |A | I_3

If A = {:[(2,0,1),(2,1,3),(1,-1,0)] , then find A^2 - 5A 6I

Find |A|: A = {:[(1,-2,2),(2,3,5),(-2,0,1)]