Home
Class 12
MATHS
Prove that the determinant |[x,sintheta,...

Prove that the determinant `|[x,sintheta,costheta],[-sintheta,-x,1],[costheta,1,x]|`, is independent of `theta`

Answer

Step by step text solution for Prove that the determinant |[x,sintheta,costheta],[-sintheta,-x,1],[costheta,1,x]|, is independent of theta by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise (Question carrying 6 marks)|7 Videos
  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise Type-III (True or False questions)|25 Videos
  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 4 MARKS|8 Videos
  • DIFFERENTAL QUATIONS

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 4 MARKS|41 Videos

Similar Questions

Explore conceptually related problems

Evaluate the determinant: |[costheta,-sintheta],[sintheta,costheta]|

Prove that (sectheta+tantheta)(1-sintheta)=costheta .

Prove that sin^3theta+cos^3theta=(sintheta+costheta)(1-sinthetacostheta) .

Prove that sintheta(cosectheta-sintheta)=cos^2theta .

Evaluate the determinant Delta=|{:(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1):}| . Also prove that 2 le Delta le 4 .

Prove that sintheta/(1+costheta)+sintheta/(1-costheta)=2/sintheta .

Evaluate |(2costheta,-2sintheta),(sintheta,costheta)|

Write the inverse of the matrix: {:[(costheta, sintheta),(-sintheta,costheta)]

Prove that (sintheta-2sin^3theta)/(2cos^3theta-costheta)=tantheta .

Prove that (1-sintheta)/(1+sintheta)=(sectheta-tantheta)^2 .