Home
Class 12
MATHS
Sum of n terms of the series (1)/(3) + (...

Sum of n terms of the series `(1)/(3) + (5)/(9) + (19)/(27) + (65)/(81)+…` is

A

`2^(n) - 1`

B

`3^(n) - 1`

C

`n - ((3^(n) - 2^(n)))/(2^(n))`

D

`n - (2 (3^(n) - 2^(n)))/(3^(n))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the first \( n \) terms of the series \[ \frac{1}{3} + \frac{5}{9} + \frac{19}{27} + \frac{65}{81} + \ldots \] we can analyze the series and derive a formula for the sum. ### Step 1: Identify the pattern in the numerators and denominators The denominators of the series are powers of 3: - \( 3^1, 3^2, 3^3, 3^4, \ldots \) The numerators appear to follow a pattern: - The numerators are \( 1, 5, 19, 65, \ldots \) ### Step 2: Find a formula for the numerators We can observe that: - \( 1 = 2^0 + 1 \) - \( 5 = 2^2 + 1 \) - \( 19 = 2^4 + 3 \) - \( 65 = 2^6 + 1 \) This suggests that the numerators can be expressed in terms of powers of 2. We can derive a general formula for the \( n \)-th term of the numerator. ### Step 3: Express the \( n \)-th term of the series The \( n \)-th term of the series can be expressed as: \[ \frac{2^{n+1} - 1}{3^n} \] ### Step 4: Write the sum of the first \( n \) terms The sum \( S_n \) of the first \( n \) terms can be expressed as: \[ S_n = \sum_{k=1}^{n} \frac{2^{k+1} - 1}{3^k} \] This can be split into two separate sums: \[ S_n = \sum_{k=1}^{n} \frac{2^{k+1}}{3^k} - \sum_{k=1}^{n} \frac{1}{3^k} \] ### Step 5: Calculate each sum 1. **First sum**: \[ \sum_{k=1}^{n} \frac{2^{k+1}}{3^k} = 2 \sum_{k=1}^{n} \left(\frac{2}{3}\right)^k = 2 \cdot \frac{\frac{2}{3}(1 - (\frac{2}{3})^n)}{1 - \frac{2}{3}} = 2 \cdot \frac{2}{3} \cdot \frac{1 - (\frac{2}{3})^n}{\frac{1}{3}} = 4(1 - (\frac{2}{3})^n) \] 2. **Second sum**: \[ \sum_{k=1}^{n} \frac{1}{3^k} = \frac{\frac{1}{3}(1 - (\frac{1}{3})^n)}{1 - \frac{1}{3}} = \frac{1}{3} \cdot \frac{1 - (\frac{1}{3})^n}{\frac{2}{3}} = \frac{1}{2}(1 - (\frac{1}{3})^n) \] ### Step 6: Combine the results Now substituting back into the expression for \( S_n \): \[ S_n = 4(1 - (\frac{2}{3})^n) - \frac{1}{2}(1 - (\frac{1}{3})^n) \] ### Step 7: Simplify Combine the terms: \[ S_n = 4 - 4(\frac{2}{3})^n - \frac{1}{2} + \frac{1}{2}(\frac{1}{3})^n \] \[ S_n = \frac{8}{2} - \frac{1}{2} - 4(\frac{2}{3})^n + \frac{1}{2}(\frac{1}{3})^n \] \[ S_n = \frac{7}{2} - 4(\frac{2}{3})^n + \frac{1}{2}(\frac{1}{3})^n \] ### Final Result Thus, the sum of the first \( n \) terms of the series is: \[ S_n = \frac{7}{2} - 4 \left(\frac{2}{3}\right)^n + \frac{1}{2} \left(\frac{1}{3}\right)^n \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 2 (TRUE AND FALSE) |2 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 2 (FILL IN THE BLANKS) |3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (FILL IN THE BLANKS) |4 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If S denote the sum to infinity and S_(n), the sum of n terms of the series 1+(1)/(3)+(1)/(9)+(1)/(27)+.... such that S-S_(n)<(1)/(300), then the least value of n is

Sum of n terms of the series (2n-1)+2(2n-3)+3(2n-5)+... is

Sum to n terms of the series 1^(3) - (1.5)^(3) +2^(3)-(2.5)^(3) +…. is

Find the sum of 7 terms of the series (16)/(27)-(8)/(9)+(4)/(3)- ….

The sum to n term of the series 1(1!)+2(2!)+3(3!)+

The sum to n term of the series 1(1!)+2(2!)+3(3!)+

The sum of first n terms of the series (2)/(3)+(8)/(9)+(26)/(27)+...... is

The sum of the first 10 terms of the series (5)/(1.2.3)+(7)/(2.3.9)+(9)/(3.4.27)+….. is

ML KHANNA-PROGRESSIONS -PROBLEM SET - 2 (MULTIPLE CHOICE QUESTIONS)
  1. If the A.M. and G.M. between two numbers are in the ratio m.n., then w...

    Text Solution

    |

  2. If S = (2)/(3) + (8)/(9) + (26)/(27) + (30)/(81)+….+n terms, then the ...

    Text Solution

    |

  3. Sum of n terms of the series (1)/(3) + (5)/(9) + (19)/(27) + (65)/(81)...

    Text Solution

    |

  4. 8 + 88 + 888 +…n terms =

    Text Solution

    |

  5. underset("n digits")((666…6)^(2)) + underset("n digits")((888…8)) is e...

    Text Solution

    |

  6. The value of sum sum(n=1)^(13) ( i^(n) + i^(n+1)) where i= sqrt( -1) ,...

    Text Solution

    |

  7. If |a| lt 1 and |b| lt 1 , then the sum of the series a(a+b) + a^2...

    Text Solution

    |

  8. If S be the sum, P the product and R the sum of the reciprocals of n t...

    Text Solution

    |

  9. If x = 1 + a + a^(2) + a^(3) +…"to" oo (|a| lt 1) and y = 1 b + b^(2) ...

    Text Solution

    |

  10. If x is the first term of a G.P. with infinite number of terms and S(o...

    Text Solution

    |

  11. If x = underset(n-0)overset(oo)sum a^(n), y= underset(n =0)overset(oo)...

    Text Solution

    |

  12. Given that 0 lt x lt (pi)/(4) and (pi)/(4) lt y lt (pi)/(2) and sum(k ...

    Text Solution

    |

  13. If x = 1 + y + y^(2) + y^(3)+…"to"oo, then y is

    Text Solution

    |

  14. (3)/(4)-(5)/(4^(2))+(3)/(4^(3))-(5)/(4^(4))+(3)/(4^(5))-(5)/(4^(6))+.....

    Text Solution

    |

  15. If {:(x = a + a//r + a//r^(2)+......oo),(y = b - b//r + b//r^(2)-........

    Text Solution

    |

  16. If S(1), S(2),…S(lambda) are the sums of infinite G.P.'s whose first t...

    Text Solution

    |

  17. The vlaue of 9^(1//3)xx9^(1//9)xx9^(1//27)xx………oo is :

    Text Solution

    |

  18. Find the value of (320(32)^(1//6)(32)^(1//36)oodot

    Text Solution

    |

  19. The value of 2.bar(357), is

    Text Solution

    |

  20. The value of 0.4bar(23) is

    Text Solution

    |