Home
Class 12
MATHS
Sum of n terms of the series (1)/(3) + (...

Sum of n terms of the series `(1)/(3) + (5)/(9) + (19)/(27) + (65)/(81)+…` is

A

`2^(n) - 1`

B

`3^(n) - 1`

C

`n - ((3^(n) - 2^(n)))/(2^(n))`

D

`n - (2 (3^(n) - 2^(n)))/(3^(n))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the first \( n \) terms of the series \[ \frac{1}{3} + \frac{5}{9} + \frac{19}{27} + \frac{65}{81} + \ldots \] we can analyze the series and derive a formula for the sum. ### Step 1: Identify the pattern in the numerators and denominators The denominators of the series are powers of 3: - \( 3^1, 3^2, 3^3, 3^4, \ldots \) The numerators appear to follow a pattern: - The numerators are \( 1, 5, 19, 65, \ldots \) ### Step 2: Find a formula for the numerators We can observe that: - \( 1 = 2^0 + 1 \) - \( 5 = 2^2 + 1 \) - \( 19 = 2^4 + 3 \) - \( 65 = 2^6 + 1 \) This suggests that the numerators can be expressed in terms of powers of 2. We can derive a general formula for the \( n \)-th term of the numerator. ### Step 3: Express the \( n \)-th term of the series The \( n \)-th term of the series can be expressed as: \[ \frac{2^{n+1} - 1}{3^n} \] ### Step 4: Write the sum of the first \( n \) terms The sum \( S_n \) of the first \( n \) terms can be expressed as: \[ S_n = \sum_{k=1}^{n} \frac{2^{k+1} - 1}{3^k} \] This can be split into two separate sums: \[ S_n = \sum_{k=1}^{n} \frac{2^{k+1}}{3^k} - \sum_{k=1}^{n} \frac{1}{3^k} \] ### Step 5: Calculate each sum 1. **First sum**: \[ \sum_{k=1}^{n} \frac{2^{k+1}}{3^k} = 2 \sum_{k=1}^{n} \left(\frac{2}{3}\right)^k = 2 \cdot \frac{\frac{2}{3}(1 - (\frac{2}{3})^n)}{1 - \frac{2}{3}} = 2 \cdot \frac{2}{3} \cdot \frac{1 - (\frac{2}{3})^n}{\frac{1}{3}} = 4(1 - (\frac{2}{3})^n) \] 2. **Second sum**: \[ \sum_{k=1}^{n} \frac{1}{3^k} = \frac{\frac{1}{3}(1 - (\frac{1}{3})^n)}{1 - \frac{1}{3}} = \frac{1}{3} \cdot \frac{1 - (\frac{1}{3})^n}{\frac{2}{3}} = \frac{1}{2}(1 - (\frac{1}{3})^n) \] ### Step 6: Combine the results Now substituting back into the expression for \( S_n \): \[ S_n = 4(1 - (\frac{2}{3})^n) - \frac{1}{2}(1 - (\frac{1}{3})^n) \] ### Step 7: Simplify Combine the terms: \[ S_n = 4 - 4(\frac{2}{3})^n - \frac{1}{2} + \frac{1}{2}(\frac{1}{3})^n \] \[ S_n = \frac{8}{2} - \frac{1}{2} - 4(\frac{2}{3})^n + \frac{1}{2}(\frac{1}{3})^n \] \[ S_n = \frac{7}{2} - 4(\frac{2}{3})^n + \frac{1}{2}(\frac{1}{3})^n \] ### Final Result Thus, the sum of the first \( n \) terms of the series is: \[ S_n = \frac{7}{2} - 4 \left(\frac{2}{3}\right)^n + \frac{1}{2} \left(\frac{1}{3}\right)^n \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 2 (TRUE AND FALSE) |2 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 2 (FILL IN THE BLANKS) |3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (FILL IN THE BLANKS) |4 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If S denote the sum to infinity and S_(n), the sum of n terms of the series 1+(1)/(3)+(1)/(9)+(1)/(27)+.... such that S-S_(n)<(1)/(300), then the least value of n is

Sum of n terms of the series (2n-1)+2(2n-3)+3(2n-5)+... is

Knowledge Check

  • Sum of n terms of the series 1 + (1 + 3) + (1 + 3 + 5)+… is

    A
    `n^(2)`
    B
    `(n (n + 1) (2n + 1))/(6)`
    C
    `((n (n + 1))/(2))^(2)`
    D
    none
  • Sum to n terms of the series 1^(3) - (1.5)^(3) +2^(3)-(2.5)^(3) +…. is

    A
    `1/6 (n+1)^(2)(n+2)^(2)-1/4`
    B
    `1/32 (n+1)^(2) (n+2)^(2) -1/8`
    C
    `(n+1)^(2)(n+2)^(2)-35`
    D
    none of these
  • The sum of the series (1)/(2) + (1)/(3) + (1)/(6)+….. to 9 terms is

    A
    `-5//6`
    B
    `-1//2`
    C
    1
    D
    `-3//2`
  • Similar Questions

    Explore conceptually related problems

    Find the sum of 7 terms of the series (16)/(27)-(8)/(9)+(4)/(3)- ….

    The sum to n term of the series 1(1!)+2(2!)+3(3!)+

    The sum to n term of the series 1(1!)+2(2!)+3(3!)+

    The sum of first n terms of the series (2)/(3)+(8)/(9)+(26)/(27)+...... is

    The sum of the first 10 terms of the series (5)/(1.2.3)+(7)/(2.3.9)+(9)/(3.4.27)+….. is