Home
Class 12
MATHS
If u = a-b, v =a + b and |a| = |b| = 2, ...

If `u = a-b, v =a + b and |a| = |b| = 2,` then `|u xx v| ` is

A

`2sqrt(16-(a.b)^(2))`

B

`2sqrt(4-(a.b)^(2))`

C

`sqrt(16-(a.b)^(2))`

D

`sqrt(4-(a.b)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the cross product of the vectors \( u \) and \( v \), where \( u = a - b \) and \( v = a + b \), and the magnitudes of vectors \( a \) and \( b \) are given as \( |a| = |b| = 2 \). ### Step-by-Step Solution: 1. **Define the vectors**: - Let \( u = a - b \) - Let \( v = a + b \) 2. **Calculate the cross product \( u \times v \)**: \[ u \times v = (a - b) \times (a + b) \] Using the distributive property of the cross product: \[ u \times v = a \times a + a \times b - b \times a - b \times b \] 3. **Simplify the cross product**: - The cross product of any vector with itself is zero: \[ a \times a = 0 \quad \text{and} \quad b \times b = 0 \] - Therefore, we have: \[ u \times v = 0 + a \times b - b \times a + 0 = a \times b - b \times a \] - Since \( b \times a = - (a \times b) \), we can write: \[ u \times v = a \times b + a \times b = 2(a \times b) \] 4. **Find the magnitude of \( u \times v \)**: \[ |u \times v| = |2(a \times b)| = 2 |a \times b| \] 5. **Calculate the magnitude of \( a \times b \)**: The magnitude of the cross product can be calculated using the formula: \[ |a \times b| = |a| |b| \sin \theta \] where \( \theta \) is the angle between vectors \( a \) and \( b \). Given \( |a| = |b| = 2 \): \[ |a \times b| = 2 \cdot 2 \cdot \sin \theta = 4 \sin \theta \] 6. **Substitute back into the magnitude**: \[ |u \times v| = 2 |a \times b| = 2(4 \sin \theta) = 8 \sin \theta \] 7. **Final expression**: Thus, the final expression for the magnitude of \( u \times v \) is: \[ |u \times v| = 8 \sin \theta \] ### Conclusion: The magnitude of \( |u \times v| \) is \( 8 \sin \theta \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

vec u = vec a-vec b, vec v = vec a + vec b and | vec a | = | vec b | = 2 then | vec u xxvec v | is equal to

Let vec a and vec b be two non-collinear unit vector.If vec u=vec a-(vec a*vec b)vec b and vec v=vec a xxvec b, then |vec v| is |vec u| b.|vec u|+|vec u*vec a|c.|vec u|+|vec u*vec b|d|vec u|+widehat u.|vec a+vec b|

Knowledge Check

  • If u = a-b , v = a+b and absa = absb = 2 then abs(u xx v) is equal to

    A
    `2sqrt(16 - (a cdot b)^2)`
    B
    `2sqrt(4 - (a cdot b)^2)`
    C
    `sqrt(16 - (a cdot b)^2)`
    D
    `sqrt(4 - (a cdot b)^2)`
  • If u=a-b and v=a+b and |a|=|b|=2 , then |uxx v| is equal to

    A
    `2sqrt(16-(a.b)^(2))`
    B
    `sqrt(16-(a.b)^(2))`
    C
    `2sqrt(4-(a.b)^(2))`
    D
    `2sqrt(4+(a.b)^(2))`
  • let u, v and w be vectors such that u + v + w = 0, if |u| =3, |v| =4 and |w| =5 , then u.v + v. w + w.u is

    A
    47
    B
    `-25`
    C
    0
    D
    25
  • Similar Questions

    Explore conceptually related problems

    vec a and vec b are two non-collinear unit vector, and vec u=vec a-(vec a*vec b)vec b and vec v=vec a xxvec b Then |vec v| is |vec u| b.|vec u|+|vec u*vec b| c.|vec u|+|vec u*vec a| d.none of these

    If a=1+2j-3k,b=2i+j-k and u is a vector satisfying a times u=a times b and a .u=0 then 2|u|^(2) is equal to

    Let a and b be two non-collinear unit vectors. If u = a-(a.b) b and v = a xx b then |v| is

    Let u, v, w be such that |u| = 1,|v| = 2 and |w| = 3 . If the projection of v along u is equal to that of w along u and v, w are perpendicular to each other then |u -v + w| =

    If 5u + 3v = 13uv and u -v = uv , then (u, v) = _____