Home
Class 12
MATHS
tan^(-1) ""1/4 + tan^(-1)"" 2/9 = 1/2 co...

`tan^(-1) ""1/4 + tan^(-1)"" 2/9 = 1/2 cos^(-1)"" 3/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1} \left( \frac{1}{4} \right) + \tan^{-1} \left( \frac{2}{9} \right) = \frac{1}{2} \cos^{-1} \left( \frac{3}{5} \right) \), we will use the formula for the sum of inverse tangents. ### Step 1: Use the formula for the sum of inverse tangents The formula for the sum of two inverse tangents is: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1} \left( \frac{x + y}{1 - xy} \right) \] Here, let \( x = \frac{1}{4} \) and \( y = \frac{2}{9} \). ### Step 2: Calculate \( x + y \) and \( 1 - xy \) First, we calculate \( x + y \): \[ x + y = \frac{1}{4} + \frac{2}{9} \] To add these fractions, we need a common denominator. The least common multiple of 4 and 9 is 36. \[ x + y = \frac{9}{36} + \frac{8}{36} = \frac{17}{36} \] Next, we calculate \( xy \): \[ xy = \frac{1}{4} \cdot \frac{2}{9} = \frac{2}{36} = \frac{1}{18} \] Now, we find \( 1 - xy \): \[ 1 - xy = 1 - \frac{1}{18} = \frac{18}{18} - \frac{1}{18} = \frac{17}{18} \] ### Step 3: Substitute into the formula Now we can substitute \( x + y \) and \( 1 - xy \) back into the formula: \[ \tan^{-1} \left( \frac{x + y}{1 - xy} \right) = \tan^{-1} \left( \frac{\frac{17}{36}}{\frac{17}{18}} \right) \] Simplifying this gives: \[ \tan^{-1} \left( \frac{17}{36} \cdot \frac{18}{17} \right) = \tan^{-1} \left( \frac{18}{36} \right) = \tan^{-1} \left( \frac{1}{2} \right) \] ### Step 4: Equate to the right-hand side Now we have: \[ \tan^{-1} \left( \frac{1}{2} \right) = \frac{1}{2} \cos^{-1} \left( \frac{3}{5} \right) \] ### Step 5: Use the double angle formula for cosine We can use the identity: \[ 2 \tan^{-1}(x) = \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \] Setting \( x = \frac{1}{2} \): \[ 2 \tan^{-1} \left( \frac{1}{2} \right) = \cos^{-1} \left( \frac{1 - \left( \frac{1}{2} \right)^2}{1 + \left( \frac{1}{2} \right)^2} \right) \] Calculating this gives: \[ = \cos^{-1} \left( \frac{1 - \frac{1}{4}}{1 + \frac{1}{4}} \right) = \cos^{-1} \left( \frac{\frac{3}{4}}{\frac{5}{4}} \right) = \cos^{-1} \left( \frac{3}{5} \right) \] ### Conclusion Thus, we have shown that: \[ \tan^{-1} \left( \frac{1}{4} \right) + \tan^{-1} \left( \frac{2}{9} \right) = \frac{1}{2} \cos^{-1} \left( \frac{3}{5} \right) \] This verifies the original equation.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(MULTIPLE CHOICE QUESTIONS)|36 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(MULTIPLE CHOICE QUESTIONS)|46 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove that tan^(-1). 1/2 +tan^(-1). 1/5 = 1/2 cos^(-1). 16/65

Knowledge Check

  • If tan^(-1)(1//4) + tan^(-1)(2//9) = (1//2) cos^(-1)x then x is equal to

    A
    `1//2`
    B
    `2//5`
    C
    `3//5`
    D
    none of these
  • cos[tan^(-1) ""1/3 + tan^(-1)"'1/2]=

    A
    `1/sqrt2`
    B
    `sqrt2`
    C
    `sqrt3/2`
    D
    none of these
  • If tan^(-1) ""1/4 + 2 tan^(-1)"" 1/5+tan^(-1)"" 1/6 + tan^(-1) ""1/x=pi/4 , " then " x=

    A
    `- 321/9`
    B
    `237/4`
    C
    `- 461/9`
    D
    `349/7`
  • Similar Questions

    Explore conceptually related problems

    tan^(-1) ""1/3 + tan^(-1) ""2/9 + tan^(-1)"" 4/33 +…. oo is equal to

    tan^(-1) . 3/5 +tan^(-1) . 1/4 = pi/2

    Prove the following: tan^(-1)(1/4)+tan^(-1)(2/9)=1/2cos^(-1)(3/5)=1/2sin^(-1)(4/5)

    If tan^(-1)(1)/(4)+tan^(-1)(2)/(9)=(1)/(2)cos^(-1)x then x is equal to

    tan^(-1)(1//4) + tan^(-1) (2//9) is equal to