Home
Class 12
MATHS
int(sinx)/(sin(x-alpha))dx =...

`int(sinx)/(sin(x-alpha))dx =`

A

`x cos alpha - sin alpha log sin (x-alpha) +c `

B

`x cos alpha + sin alpha log sin (x-alpha) +c `

C

`x sin alpha - sin alpha log sin (x-alpha)+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sin x}{\sin(x - \alpha)} \, dx\), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin x}{\sin(x - \alpha)} \, dx \] ### Step 2: Use the Sine Difference Formula We can express \(\sin(x - \alpha)\) using the sine difference formula: \[ \sin(x - \alpha) = \sin x \cos \alpha - \cos x \sin \alpha \] Thus, we can rewrite the integral as: \[ I = \int \frac{\sin x}{\sin x \cos \alpha - \cos x \sin \alpha} \, dx \] ### Step 3: Simplify the Integral To simplify the integral, we can separate the terms in the denominator: \[ I = \int \frac{\sin x}{\sin x \cos \alpha - \cos x \sin \alpha} \, dx = \int \left( \frac{1}{\cos \alpha} + \frac{\sin \alpha \cos x}{\sin x (\cos \alpha - \sin \alpha)} \right) \, dx \] ### Step 4: Separate the Integral Now we can separate the integral into two parts: \[ I = \frac{1}{\cos \alpha} \int dx + \sin \alpha \int \frac{\cos x}{\sin x} \, dx \] ### Step 5: Integrate Each Part 1. The first integral: \[ \int dx = x \] Thus, \[ \frac{1}{\cos \alpha} \int dx = \frac{x}{\cos \alpha} \] 2. The second integral: \[ \int \frac{\cos x}{\sin x} \, dx = \log |\sin x| + C \] Therefore, \[ \sin \alpha \int \frac{\cos x}{\sin x} \, dx = \sin \alpha \log |\sin x| \] ### Step 6: Combine the Results Combining both parts, we get: \[ I = \frac{x}{\cos \alpha} + \sin \alpha \log |\sin x| + C \] ### Final Answer Thus, the integral evaluates to: \[ \int \frac{\sin x}{\sin(x - \alpha)} \, dx = \frac{x}{\cos \alpha} + \sin \alpha \log |\sin x| + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If int(sin x)/(sin(x-alpha))dx=Ax+B log sin(x-alpha) , then value of (A,B) is

int(sin x)/(sin(x+alpha)dx)

Knowledge Check

  • If int (sin x)/(sin (x-alpha))dx =Ax+B log sin (x-alpha)+C , then the value of (A,B) , is

    A
    `(-cosalpha, sin alpha)`
    B
    `(cosalpha, sin alpha)`
    C
    `(-sinalpha, cos alpha)`
    D
    `(sinalpha, cos alpha)`
  • int(sinx+cosx)/(sin(x+alpha))dx=

    A
    `x(cosalpha-sinalpha)+(cosalpha+sinalpha)log|sin(x-alpha)|+c`
    B
    `x(cosalpha+sinalpha)+(cosalpha-sinalpha)log|sin(x-alpha)|+c`
    C
    `x(cosalpha+sinalpha)+(cosalpha-sinalpha)log|sin(x+alpha)|+c`
    D
    `x(cosalpha+sinalpha)-(cosalpha-sinalpha)log|sin(x+alpha)|+c`
  • int(sinx)/(sin(x-(pi)/(4)))dx " is equal to "

    A
    `(1)/(sqrt(2))(x+log_(e)|cos(x-(pi)/(4))|)+c`
    B
    `(1)/(sqrt(2))(x-log_(e)|sin(x-(pi)/(4))|)+c`
    C
    `sqrt(2)(x+log_(e)|sin(x-(pi)/(4))|)+c`
    D
    `(1)/(sqrt(2))(x+log_(e)|sin(x-(pi)/(4))|)+c`
  • Similar Questions

    Explore conceptually related problems

    int(sin2x)/(sin(x-alpha)sin(x+alpha))dx

    Evaluate : int(sinx+cosx)/(sin(x-a))dx

    Evaluate: (i) int(sin(x-a))/(sin(x-b))dx (ii) int(sin(x-alpha))/(sin(x+alpha))dx

    int(sinx)/(sin(x-a))dx-int(cosx)/(cos(x-a))dx=

    int(sin x+cos x)/(sin(x -alpha))dx is equal to