Home
Class 12
MATHS
If 0 lt x le 1, " then " sqrt(1+x^2) [{...

If `0 lt x le 1, " then "`
` sqrt(1+x^2) [{x cos (cot^(-1)x)+sin(cot^(-1)x)}^(2)-1]^(1//2)=`

A

`x/(sqrt(1+x^2))`

B

x

C

`x sqrt(1+x^2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ \sqrt{1+x^2} \left[ \left( x \cos(\cot^{-1} x) + \sin(\cot^{-1} x) \right)^2 - 1 \right]^{\frac{1}{2}}, \] we will follow these steps: ### Step 1: Define the angle Let \(\theta = \cot^{-1} x\). This means that \(\cot \theta = x\). ### Step 2: Find the sine and cosine From the definition of cotangent, we can express sine and cosine in terms of \(x\): - \(\cot \theta = \frac{\text{adjacent}}{\text{opposite}} = \frac{1}{x}\) implies that the opposite side is \(1\) and the adjacent side is \(x\). - Using the Pythagorean theorem, the hypotenuse \(h\) can be calculated as: \[ h = \sqrt{1^2 + x^2} = \sqrt{1 + x^2}. \] - Therefore, we can find: \[ \cos \theta = \frac{x}{\sqrt{1+x^2}}, \quad \sin \theta = \frac{1}{\sqrt{1+x^2}}. \] ### Step 3: Substitute sine and cosine into the expression Now we substitute \(\cos(\cot^{-1} x)\) and \(\sin(\cot^{-1} x)\) into the expression: \[ x \cos(\cot^{-1} x) + \sin(\cot^{-1} x) = x \cdot \frac{x}{\sqrt{1+x^2}} + \frac{1}{\sqrt{1+x^2}} = \frac{x^2 + 1}{\sqrt{1+x^2}}. \] ### Step 4: Square the expression Now we need to square the expression: \[ \left( x \cos(\cot^{-1} x) + \sin(\cot^{-1} x) \right)^2 = \left( \frac{x^2 + 1}{\sqrt{1+x^2}} \right)^2 = \frac{(x^2 + 1)^2}{1+x^2}. \] ### Step 5: Simplify the expression Now we simplify: \[ \left( x \cos(\cot^{-1} x) + \sin(\cot^{-1} x) \right)^2 - 1 = \frac{(x^2 + 1)^2 - (1+x^2)}{1+x^2} = \frac{x^4 + 2x^2 + 1 - 1 - x^2}{1+x^2} = \frac{x^4 + x^2}{1+x^2} = \frac{x^2(x^2 + 1)}{1+x^2}. \] ### Step 6: Take the square root Now we take the square root: \[ \sqrt{\left( x \cos(\cot^{-1} x) + \sin(\cot^{-1} x) \right)^2 - 1} = \sqrt{\frac{x^2(x^2 + 1)}{1+x^2}} = \frac{x\sqrt{x^2 + 1}}{\sqrt{1+x^2}} = x. \] ### Step 7: Multiply by \(\sqrt{1+x^2}\) Finally, we multiply by \(\sqrt{1+x^2}\): \[ \sqrt{1+x^2} \cdot x = x\sqrt{1+x^2}. \] ### Final Answer Thus, the final result is: \[ x \sqrt{1+x^2}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (4)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

If 0ltxlt1 then sqrt(1+x^(2))[{x cos (cot^(-1)x)+sin(cot^(-1)x}^(2)-1]^(1/2)

If 0

Knowledge Check

  • If 0 lt x lt 1", then " sqrt(1+x^(2))[{x cos (cot^(-1)x) + sin ( cot^(-1) x)}^(2) -1]^(1//2) is equal to

    A
    `x/sqrt(1+x^(2))`
    B
    `x`
    C
    `xsqrt(1+x^(2))`
    D
    `sqrt(1+x^(2))`
  • if 0 lt x lt 1 , then sqrt( 1+ x^(2))[ { x cos ( cot^(-1) x ) + sin ( cot^(-1) x)} ^(2) -1]^(1//2) is equal to

    A
    `( x )/( sqrt( 1+ x^(2)))`
    B
    x
    C
    `x sqrt( 1+ x^(2))`
    D
    `sqrt( 1+ x^(2))`
  • If 0lt xlt1, then sqrt(1+x^2)[{x cos (cot^-1x)+sin(cot^-1x)}^2-1]^(1//2) is equal to

    A
    `x/sqrt(1+x^2)`
    B
    x
    C
    `xsqrt(1+x^2)`
    D
    `sqrt(1+x^2)`
  • Similar Questions

    Explore conceptually related problems

    cot^(-1)(sqrt(1+x^2)-x)

    Prove that cos [tan^(-1){(sin(cot^(-1)x}] =((x^(2)+1)/(x^(2)+2)) ^(1/2)

    sqrt(1+2cot x(cos ecx+cot x))dx=

    Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))

    Statement 1: If x=(1)/(5 sqrt(2)) , then [x cos(cot^(-1)x)+sin(cot^(-1)x)]^(2)=(51)/(50) . Statement 2: tan["cot"^(-1)(1)/(5sqrt(2))-"sin"^(-1)(4)/(sqrt(17))]=(29)/(3) .