Home
Class 12
MATHS
r1 cot ""A/2=r2 cot""B/2=r3 cot""C/2=S...

`r_1 cot ""A/2=r_2 cot""B/2=r_3 cot""C/2=S`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( r_1 \cot \frac{A}{2} = r_2 \cot \frac{B}{2} = r_3 \cot \frac{C}{2} = S \), we will analyze each term separately and derive the relationships. ### Step 1: Understand the terms We have: - \( r_1 \) is the radius of the incircle (inradius). - \( r_2 \) is the radius of the A-excircle. - \( r_3 \) is the radius of the B-excircle. - \( S \) is the area of the triangle. ### Step 2: Use the formula for \( r_1 \) The formula for the inradius \( r_1 \) is given by: \[ r_1 = \frac{S}{s} \] where \( S \) is the area of the triangle and \( s \) is the semi-perimeter defined as: \[ s = \frac{a + b + c}{2} \] ### Step 3: Use the formula for \( \cot \frac{A}{2} \) The formula for \( \cot \frac{A}{2} \) is: \[ \cot \frac{A}{2} = \sqrt{\frac{s(s-a)}{(s-b)(s-c)}} \] ### Step 4: Substitute into the equation for \( r_1 \) Substituting \( r_1 \) into the equation: \[ r_1 \cot \frac{A}{2} = \frac{S}{s} \cdot \sqrt{\frac{s(s-a)}{(s-b)(s-c)}} \] ### Step 5: Analyze \( r_2 \) and \( r_3 \) Similarly, we can write: \[ r_2 = \frac{S}{s-a}, \quad r_3 = \frac{S}{s-b} \] and their respective cotangent terms: \[ \cot \frac{B}{2} = \sqrt{\frac{s(s-b)}{(s-a)(s-c)}}, \quad \cot \frac{C}{2} = \sqrt{\frac{s(s-c)}{(s-a)(s-b)}} \] ### Step 6: Set up the equations Now, we can set up the equations: \[ r_2 \cot \frac{B}{2} = \frac{S}{s-a} \cdot \sqrt{\frac{s(s-b)}{(s-a)(s-c)}} \] \[ r_3 \cot \frac{C}{2} = \frac{S}{s-b} \cdot \sqrt{\frac{s(s-c)}{(s-a)(s-b)}} \] ### Step 7: Equate all three expressions Now we equate: \[ \frac{S}{s} \cdot \sqrt{\frac{s(s-a)}{(s-b)(s-c)}} = \frac{S}{s-a} \cdot \sqrt{\frac{s(s-b)}{(s-a)(s-c)}} = \frac{S}{s-b} \cdot \sqrt{\frac{s(s-c)}{(s-a)(s-b)}} \] ### Step 8: Analyze the conditions From these equalities, we can analyze the conditions under which they hold true. We can conclude that: - Each expression must be equal to \( S \) under the conditions of the triangle. ### Conclusion Thus, we conclude that \( r_1 \cot \frac{A}{2} = r_2 \cot \frac{B}{2} = r_3 \cot \frac{C}{2} \) does not equal \( S \) under typical triangle conditions, leading us to the conclusion that the statement is false.
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(FILL IN THE BLANKS)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (5)(MULTIPLE CHOICE QUESTIONS)|5 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(MULTIPLE CHOICE QUESTIONS)|55 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

In any Delta ABC , If cot ""A/2 , cot ""B/2 ,cot ""C/2 are in AP, then a,b,c are in

In a DeltaABC, "the value of"cot""(A)/(2)cot""(B)/(2)cot""(C)/(2)is

In a DeltaABC,"cot"A/2+"cot"B/2+"cot"(C)/(2)=

Prove :r(cot A)/(2)+a=r(cot B)/(2)+b+r(cot C)/(2)+c

In a triangle ABC prove that r_1r_2r_3=r^3 cot^2 (A/2). cot^2 (B/2).cot^2(C/2)

If A+B+C=pi , prove that : cot( A/2)+ cot(B/2) + cot( C/2) = cot( A/2) cot(B/2) cot(C/2)