Home
Class 12
MATHS
Let y= sin^(-1)"" (2 x)/(1 +x^2) where...

Let `y= sin^(-1)"" (2 x)/(1 +x^2)` where ` 0 lt x lt 1` and `0 lt y lt pi/2` then ` ( dy)/(dx)` is equal to

A

`(2)/(1 + x^2)`

B

`(2x)/(1+x^2)`

C

`(1)/(1+x^2)`

D

`(-x)/(1+x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \sin^{-1}\left(\frac{2x}{1 + x^2}\right)\), we can follow these steps: ### Step 1: Substitute \(x\) with \(\tan(\theta)\) Let \(x = \tan(\theta)\). Then, we can express \(y\) in terms of \(\theta\): \[ y = \sin^{-1}\left(\frac{2\tan(\theta)}{1 + \tan^2(\theta)}\right) \] ### Step 2: Use the double angle identity for sine Using the identity \(\sin(2\theta) = \frac{2\tan(\theta)}{1 + \tan^2(\theta)}\), we can simplify \(y\): \[ y = \sin^{-1}(\sin(2\theta)) \] Since \(0 < \theta < \frac{\pi}{4}\), we have: \[ y = 2\theta \] ### Step 3: Express \(\theta\) in terms of \(x\) From our substitution \(x = \tan(\theta)\), we can express \(\theta\) as: \[ \theta = \tan^{-1}(x) \] Thus, we can rewrite \(y\): \[ y = 2\tan^{-1}(x) \] ### Step 4: Differentiate \(y\) with respect to \(x\) Now, we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = 2 \cdot \frac{d}{dx}(\tan^{-1}(x)) \] Using the derivative of \(\tan^{-1}(x)\), which is \(\frac{1}{1 + x^2}\), we have: \[ \frac{dy}{dx} = 2 \cdot \frac{1}{1 + x^2} \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{2}{1 + x^2} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

If 0 lt a lt pi then int(dx)/(1-2acos2x+a^(2)) is equal to

Knowledge Check

  • If 0 lt x lt pi and cosx+sinx=1/2 , then tan x is equal to

    A
    `(4-sqrt7)/3`
    B
    `- (4+sqrt7)/3`
    C
    `(1+sqrt7)/4`
    D
    `(1-sqrt7)/4`
  • If -1 lt x lt 0 , then cos^(-1) x is equal to

    A
    `sec^(-1).(1)/(x)`
    B
    `pi - sin^(-1) sqrt(1 -x^(2))`
    C
    `pi + tan^(-1).(sqrt(1 -x^(2)))/(x)`
    D
    `cot^(-1).(x)/(sqrt(1 -x^(2)))`
  • If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx) is equal to

    A
    `(-1)/(1 + x^(2))`
    B
    `(1)/(1 +x^(2))`
    C
    `(-2)/(1 +x^(2))`
    D
    `(2)/(1 + x^(2))`
  • Similar Questions

    Explore conceptually related problems

    y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

    y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1

    If 0 lt x lt pi and cos x + sin x = 1/2 , then tan x is

    If 0 lt x lt 5 and 1 lt y lt 2 , then which of the following is true ?

    If y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx) is equal to