Home
Class 12
MATHS
If 2^x + 2^y = 2^(x+y) , then (dy)/(d...

If ` 2^x + 2^y = 2^(x+y) ,` then `(dy)/(dx)` is equal to

A

`(2^x +2^y) // (2^y -2^y)`

B

`(2^(y)(1-2^(y)))/(2^(x)(2^(x)-1))`

C

`(2^(x)(1-2^(y)))/(2^(y)(2^(x)-1))`

D

`(2^(x+y)-2^x) //2^y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2^x + 2^y = 2^{x+y} \) for \( \frac{dy}{dx} \), we will differentiate both sides with respect to \( x \). ### Step-by-Step Solution: 1. **Differentiate Both Sides:** Start with the equation: \[ 2^x + 2^y = 2^{x+y} \] Differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(2^x) + \frac{d}{dx}(2^y) = \frac{d}{dx}(2^{x+y}) \] 2. **Apply the Differentiation Formula:** Using the formula \( \frac{d}{dx}(a^u) = a^u \ln(a) \cdot \frac{du}{dx} \): - For \( 2^x \): \[ \frac{d}{dx}(2^x) = 2^x \ln(2) \] - For \( 2^y \): \[ \frac{d}{dx}(2^y) = 2^y \ln(2) \cdot \frac{dy}{dx} \] - For \( 2^{x+y} \): \[ \frac{d}{dx}(2^{x+y}) = 2^{x+y} \ln(2) \cdot (1 + \frac{dy}{dx}) \] 3. **Substitute the Derivatives:** Substitute these derivatives back into the differentiated equation: \[ 2^x \ln(2) + 2^y \ln(2) \cdot \frac{dy}{dx} = 2^{x+y} \ln(2) (1 + \frac{dy}{dx}) \] 4. **Simplify the Equation:** We can divide the entire equation by \( \ln(2) \) (assuming \( \ln(2) \neq 0 \)): \[ 2^x + 2^y \frac{dy}{dx} = 2^{x+y} (1 + \frac{dy}{dx}) \] 5. **Rearrange the Equation:** Rearranging gives: \[ 2^x + 2^y \frac{dy}{dx} = 2^{x+y} + 2^{x+y} \frac{dy}{dx} \] Now, isolate the terms involving \( \frac{dy}{dx} \): \[ 2^y \frac{dy}{dx} - 2^{x+y} \frac{dy}{dx} = 2^{x+y} - 2^x \] 6. **Factor Out \( \frac{dy}{dx} \):** Factor \( \frac{dy}{dx} \) out from the left side: \[ \frac{dy}{dx} (2^y - 2^{x+y}) = 2^{x+y} - 2^x \] 7. **Solve for \( \frac{dy}{dx} \):** Finally, divide both sides by \( (2^y - 2^{x+y}) \): \[ \frac{dy}{dx} = \frac{2^{x+y} - 2^x}{2^y - 2^{x+y}} \] 8. **Simplify the Expression:** Notice that \( 2^{x+y} = 2^x \cdot 2^y \): \[ \frac{dy}{dx} = \frac{2^x(2^y - 1)}{2^y(1 - 2^x)} \] ### Final Result: Thus, the value of \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{2^y - 1}{2^y(1 - 2^x)} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If x^(y) = 2^(x-y) , then (dy)/(dx) =?

" If 2^(x)+2^(y)=x+y, then (dy)/(dx) is equal to "

Knowledge Check

  • If y^(x) = x^(y) , "then" (dy)/(dx) is equal to

    A
    `(y)/(x) ((y + x logy)/(x - y logx))`
    B
    `(y)/(x) ((y - x logy)/(x - y logx))`
    C
    `(y)/(x) ((y + x logy)/(x + y logx))`
    D
    None of these
  • If (y/x) + (x/y)=2 , then (dy)/(dx) is equal to

    A
    2xy
    B
    1
    C
    `-1`
    D
    0
  • If x^(y) = e^(2(x-y)), "then" (dy)/(dx) is equal to

    A
    `(2(1+ logx))/((2 + log x)^(2))`
    B
    `(1 + logx)/(2 + logx)^(2)`
    C
    `(2)/(2 + log x)`
    D
    `(2(1+ logx))/((2 + log x)^(2))`
  • Similar Questions

    Explore conceptually related problems

    If x^y=y^x , then (dy)/(dx) is equal to......

    If x^(2)+y^(2)=4, then y(dy)/(dx)+x is equal to

    If 2y=sin^-1(x+5y),then,(dy)/(dx) is equal to

    If 2^(x) +2y =2^(x+y),then (dy)/(dx)=

    If y^x=x^y , then dy/dx is equal to