Home
Class 12
MATHS
If y=sqrt((1+ tanx )/(1- tan x)) , the...

If ` y=sqrt((1+ tanx )/(1- tan x)) , ` then ` (dy)/(dx)=`

A

`1/2 sqrt((1-tanx )/(1 + tan x)) sec^2 ((pi)/(4) +x)`

B

`sqrt((1- tan x)/( 1+ tan x )) sec^2 ((pi)/(4) +x)`

C

`1/2 sqrt((1- tan x)/(1+ tan x)) sec ""((pi)/(4) +x)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \sqrt{\frac{1 + \tan x}{1 - \tan x}} \), we will follow these steps: ### Step 1: Rewrite the function We start with the given function: \[ y = \sqrt{\frac{1 + \tan x}{1 - \tan x}} \] ### Step 2: Apply the chain rule To differentiate \( y \), we will use the chain rule. The derivative of \( \sqrt{u} \) is \( \frac{1}{2\sqrt{u}} \) where \( u = \frac{1 + \tan x}{1 - \tan x} \). Thus, we have: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{\frac{1 + \tan x}{1 - \tan x}}} \cdot \frac{d}{dx}\left(\frac{1 + \tan x}{1 - \tan x}\right) \] ### Step 3: Differentiate the inner function Next, we need to differentiate \( \frac{1 + \tan x}{1 - \tan x} \). We will use the quotient rule, which states that if \( u = 1 + \tan x \) and \( v = 1 - \tan x \), then: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): - \( \frac{du}{dx} = \sec^2 x \) - \( \frac{dv}{dx} = -\sec^2 x \) Now applying the quotient rule: \[ \frac{d}{dx}\left(\frac{1 + \tan x}{1 - \tan x}\right) = \frac{(1 - \tan x)(\sec^2 x) - (1 + \tan x)(-\sec^2 x)}{(1 - \tan x)^2} \] ### Step 4: Simplify the derivative This simplifies to: \[ \frac{(1 - \tan x)\sec^2 x + (1 + \tan x)\sec^2 x}{(1 - \tan x)^2} = \frac{(1 - \tan x + 1 + \tan x)\sec^2 x}{(1 - \tan x)^2} = \frac{2\sec^2 x}{(1 - \tan x)^2} \] ### Step 5: Substitute back into the derivative Now substituting back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{2\sqrt{\frac{1 + \tan x}{1 - \tan x}}} \cdot \frac{2\sec^2 x}{(1 - \tan x)^2} \] ### Step 6: Simplify the final expression The \( 2 \) in the numerator and denominator cancels out: \[ \frac{dy}{dx} = \frac{\sec^2 x}{\sqrt{\frac{1 + \tan x}{1 - \tan x}}(1 - \tan x)^2} \] ### Step 7: Further simplify the square root We can express the square root as: \[ \sqrt{\frac{1 + \tan x}{1 - \tan x}} = \frac{\sqrt{1 + \tan x}}{\sqrt{1 - \tan x}} \] Thus, we can rewrite \( \frac{dy}{dx} \) as: \[ \frac{dy}{dx} = \frac{\sec^2 x \cdot \sqrt{1 - \tan x}}{(1 - \tan x)^2 \cdot \sqrt{1 + \tan x}} \] ### Final Answer Thus, the derivative is: \[ \frac{dy}{dx} = \frac{\sec^2 x}{2} \cdot \frac{1 - \tan x}{1 + \tan x} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y = sqrt((1 + tan x)/(1 - tan x)) " then " (dy)/(dx)= ?

If y= sqrt ((1-tan 2x ) /( 1+tan 2x )) ,then (dy)/(dx) =

If y=sqrt((1+tanx)/(1-tanx))," then: "(dy)/(dx)=

If y=log sqrt((1+tan x)/(1-tan x)), Prove that (dy)/(dx)=sec2x

If y=sqrt((1+tan x)/(1-tan x)) then (dy)/(dx)= is equal to

If Y = (1 + tan x)/(1 - tan x) , then (dy)/(dx) is

If y=log sqrt((1-tan x)/(1+tan x)), prove that (dy)/(dx)=sec2x

If y=tan^(-1)((6+5 tanx)/(5- 6 tanx)) , then (dy)/(dx)=

If y=tan ^(-1) sqrt(( a-x)/( a+x)) ,then (dy)/(dx) =

If y=x^(tan ^(-1)x) ,then (dy)/(dx)=