To solve the problem of finding the number of sodium ions in 53 g of \( \text{Na}_2\text{CO}_3 \), we will follow these steps:
### Step 1: Calculate the Molar Mass of \( \text{Na}_2\text{CO}_3 \)
The molar mass of \( \text{Na}_2\text{CO}_3 \) can be calculated by adding the atomic masses of its constituent elements:
- Sodium (Na): 23 u (2 atoms) = \( 23 \times 2 = 46 \) u
- Carbon (C): 12 u (1 atom) = \( 12 \times 1 = 12 \) u
- Oxygen (O): 16 u (3 atoms) = \( 16 \times 3 = 48 \) u
Now, add these together:
\[
\text{Molar mass of } \text{Na}_2\text{CO}_3 = 46 + 12 + 48 = 106 \text{ g/mol}
\]
### Step 2: Calculate the Number of Moles of \( \text{Na}_2\text{CO}_3 \)
Using the formula for moles:
\[
\text{Number of moles} = \frac{\text{Given mass}}{\text{Molar mass}}
\]
Substituting the values:
\[
\text{Number of moles} = \frac{53 \text{ g}}{106 \text{ g/mol}} = 0.5 \text{ moles}
\]
### Step 3: Determine the Number of Sodium Ions
Each mole of \( \text{Na}_2\text{CO}_3 \) contains 2 moles of sodium ions. Therefore, the total number of moles of sodium ions in 0.5 moles of \( \text{Na}_2\text{CO}_3 \) is:
\[
\text{Moles of sodium ions} = 2 \times 0.5 = 1 \text{ mole}
\]
### Step 4: Calculate the Number of Sodium Ions
Using Avogadro's number, which is \( 6.022 \times 10^{23} \) ions/mole, we can find the total number of sodium ions:
\[
\text{Number of sodium ions} = 1 \text{ mole} \times 6.022 \times 10^{23} \text{ ions/mole} = 6.022 \times 10^{23} \text{ ions}
\]
### Step 5: Identify the Value of \( x \)
From the calculation, we see that the number of sodium ions is \( 6.022 \times 10^{23} \). Therefore, the value of \( x \) is:
\[
x = 6.022
\]
### Final Answer
The value of \( x \) is **6.022**.
---