Home
Class 9
MATHS
(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and ...

`(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy)` and `sqrt(x)sqrt(y)=sqrt(xy)` , where `x` and `y` are positive real numbers .
If `x=2sqrt(5)+sqrt(3)` and `y=2sqrt(5)-sqrt(3)`, then `x^(4)+y^(4)` =

A

`1538`

B

`1200`

C

`1048`

D

`149`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \( x^4 + y^4 \) given \( x = 2\sqrt{5} + \sqrt{3} \) and \( y = 2\sqrt{5} - \sqrt{3} \). ### Step 1: Calculate \( x^2 \) and \( y^2 \) We start by calculating \( x^2 \): \[ x^2 = (2\sqrt{5} + \sqrt{3})^2 = (2\sqrt{5})^2 + 2(2\sqrt{5})(\sqrt{3}) + (\sqrt{3})^2 \] Calculating each term: - \( (2\sqrt{5})^2 = 4 \cdot 5 = 20 \) - \( 2(2\sqrt{5})(\sqrt{3}) = 4\sqrt{15} \) - \( (\sqrt{3})^2 = 3 \) Thus, \[ x^2 = 20 + 4\sqrt{15} + 3 = 23 + 4\sqrt{15} \] Now, we calculate \( y^2 \): \[ y^2 = (2\sqrt{5} - \sqrt{3})^2 = (2\sqrt{5})^2 - 2(2\sqrt{5})(\sqrt{3}) + (\sqrt{3})^2 \] Calculating each term: - \( (2\sqrt{5})^2 = 20 \) - \( -2(2\sqrt{5})(\sqrt{3}) = -4\sqrt{15} \) - \( (\sqrt{3})^2 = 3 \) Thus, \[ y^2 = 20 - 4\sqrt{15} + 3 = 23 - 4\sqrt{15} \] ### Step 2: Calculate \( x^2 + y^2 \) Now, we add \( x^2 \) and \( y^2 \): \[ x^2 + y^2 = (23 + 4\sqrt{15}) + (23 - 4\sqrt{15}) = 46 \] ### Step 3: Calculate \( x^2y^2 \) Next, we calculate \( x^2y^2 \): \[ x^2y^2 = (x^2)(y^2) = (23 + 4\sqrt{15})(23 - 4\sqrt{15}) \] This is a difference of squares: \[ x^2y^2 = 23^2 - (4\sqrt{15})^2 = 529 - 240 = 289 \] ### Step 4: Calculate \( x^4 + y^4 \) Now we can use the identity: \[ x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 \] Substituting the values we found: \[ x^4 + y^4 = 46^2 - 2 \cdot 289 = 2116 - 578 = 1538 \] Thus, the final answer is: \[ \boxed{1538} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (Very short answer type)|10 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (short answer type)|10 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Assertion & Reason type)|5 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

If x=sqrt(5)+sqrt(3) and y=sqrt(5)-sqrt(3), then x^(4)-y^(4)

if x=sqrt(3)+(1)/(sqrt(3)) and y=sqrt(3)-(1)/(sqrt(3)) then x^(2)-y^(2) is

Knowledge Check

  • (sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If x=sqrt(3)+3sqrt(2) and y=sqrt(3)-3sqrt(2) , then x^(4)+y^(4)-8x^(2)y^(2) =

    A
    `3914`
    B
    `3010`
    C
    `-486`
    D
    `-856`
  • (sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If a=1+sqrt(2)+sqrt(3) and b=1+sqrt(2)-sqrt(3) , then a^(2)+b^(2)-2a-2b=

    A
    `11`
    B
    `8`
    C
    `152`
    D
    `15`
  • If x = sqrt(5) + sqrt(3) and y = sqrt( 5) - sqrt(3) , then value of ( x^(4) - y^(4)) is

    A
    `64 sqrt( 15)`
    B
    16
    C
    544
    D
    ` 32 sqrt( 15 )`
  • Similar Questions

    Explore conceptually related problems

    If x=(sqrt3-1)/(sqrt3+1) and y=(sqrt3+1)/(sqrt3-1) then x^2-xy+y^2

    sqrt (2x) -sqrt (3y) = 0sqrt (3x) -sqrt (3y) = 0

    If x = sqrt5 + sqrt3 and y = sqrt5 - sqrt3, then the value of x ^(4) - y ^(4) is

    If x=(2)/(sqrt(3)-sqrt(5)) and y=(2)/(sqrt(3)+sqrt(5)) , then x+y = _______ .

    If sqrt(x)-sqrt(y)=1 , sqrt(x)+sqrt(y)=17 then sqrt(xy)=?