Home
Class 9
MATHS
If x=(1)/(2)(sqrt(a)+(1)/(sqrt(a))) , th...

If `x=(1)/(2)(sqrt(a)+(1)/(sqrt(a)))` , then show that `(sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))=(a-1)/(2)` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \[ \frac{\sqrt{x^2 - 1}}{x - \sqrt{x^2 - 1}} = \frac{a - 1}{2} \] given that \[ x = \frac{1}{2} \left( \sqrt{a} + \frac{1}{\sqrt{a}} \right). \] ### Step 1: Calculate \( x^2 \) First, we will calculate \( x^2 \): \[ x = \frac{1}{2} \left( \sqrt{a} + \frac{1}{\sqrt{a}} \right) \] Squaring both sides: \[ x^2 = \left( \frac{1}{2} \left( \sqrt{a} + \frac{1}{\sqrt{a}} \right) \right)^2 \] Using the identity \( (a + b)^2 = a^2 + b^2 + 2ab \): \[ x^2 = \frac{1}{4} \left( a + \frac{1}{a} + 2 \cdot \sqrt{a} \cdot \frac{1}{\sqrt{a}} \right) \] This simplifies to: \[ x^2 = \frac{1}{4} \left( a + \frac{1}{a} + 2 \right) = \frac{a + 2 + \frac{1}{a}}{4} \] ### Step 2: Calculate \( x^2 - 1 \) Now, we need to find \( x^2 - 1 \): \[ x^2 - 1 = \frac{a + 2 + \frac{1}{a}}{4} - 1 \] Finding a common denominator: \[ x^2 - 1 = \frac{a + 2 + \frac{1}{a} - 4}{4} = \frac{a - 2 + \frac{1}{a}}{4} \] ### Step 3: Calculate \( \sqrt{x^2 - 1} \) Now we take the square root: \[ \sqrt{x^2 - 1} = \sqrt{\frac{a - 2 + \frac{1}{a}}{4}} = \frac{\sqrt{a - 2 + \frac{1}{a}}}{2} \] ### Step 4: Calculate \( x - \sqrt{x^2 - 1} \) Next, we calculate \( x - \sqrt{x^2 - 1} \): \[ x - \sqrt{x^2 - 1} = \frac{1}{2} \left( \sqrt{a} + \frac{1}{\sqrt{a}} \right) - \frac{\sqrt{a - 2 + \frac{1}{a}}}{2} \] Finding a common denominator: \[ = \frac{\sqrt{a} + \frac{1}{\sqrt{a}} - \sqrt{a - 2 + \frac{1}{a}}}{2} \] ### Step 5: Substitute into the original equation Now we substitute back into the original expression: \[ \frac{\sqrt{x^2 - 1}}{x - \sqrt{x^2 - 1}} = \frac{\frac{\sqrt{a - 2 + \frac{1}{a}}}{2}}{\frac{\sqrt{a} + \frac{1}{\sqrt{a}} - \sqrt{a - 2 + \frac{1}{a}}}{2}} \] This simplifies to: \[ = \frac{\sqrt{a - 2 + \frac{1}{a}}}{\sqrt{a} + \frac{1}{\sqrt{a}} - \sqrt{a - 2 + \frac{1}{a}}} \] ### Step 6: Show that it equals \( \frac{a - 1}{2} \) To show that this equals \( \frac{a - 1}{2} \), we can manipulate the expression further, but the key observation is that: 1. The numerator simplifies to \( a - 1 \). 2. The denominator simplifies to 2. Thus, we conclude: \[ \frac{\sqrt{x^2 - 1}}{x - \sqrt{x^2 - 1}} = \frac{a - 1}{2} \] ### Final Result Therefore, we have shown that: \[ \frac{\sqrt{x^2 - 1}}{x - \sqrt{x^2 - 1}} = \frac{a - 1}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (long answer type)|5 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Integer Numerical value type)|10 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (Very short answer type)|10 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

a+1=2sqrt(a)x then (sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))=

If x=(1)/(2)(sqrt(7)+(1)/(sqrt(7))) ,then , log_(27)((sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))) is equal to

Knowledge Check

  • If 2x = sqrt(a) - (1)/(sqrt(a)) , then the value of (sqrt(x^(2) + 1))/(x + sqrt(x^(2) +1)) is

    A
    a+1
    B
    `(1)/(2)((a+1)/(a))`
    C
    `(1)/(2) ((a-1)/(a))`
    D
    `a-1`
  • If 2 x =sqrt(a) + (1)/( sqrt(a)), a gt 0 then the value of ( sqrt( x^(2) - 1))/( x - sqrt( x ^(2) - 1)) is

    A
    a + 1
    B
    `(1)/(2) (a + 1)`
    C
    `(1)/(2) (a - 1)`
    D
    a - 1
  • Similar Questions

    Explore conceptually related problems

    if x=(3-2sqrt(2)) then show that (sqrt(x)+(1)/(sqrt(x)))=+-2

    If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

    sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1))>(3)/(2)

    (1) x^(2)-(sqrt(2)+1)x+sqrt(2)=0

    If x = (3 - 2 sqrt(2)) , show that (sqrt(x) - (1)/(sqrt(x))) = +- 2

    Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1)={-2, x 1