Home
Class 8
MATHS
Ifroot3((a^(6) xx b^(3) xx c^(21))/(c^(9...

If`root3((a^(6) xx b^(3) xx c^(21))/(c^(9) xx a^(12)))=(bc^(k))/a^(k//2')`then k=______ .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sqrt[3]{\frac{a^6 \cdot b^3 \cdot c^{21}}{c^9 \cdot a^{12}}} = \frac{b \cdot c^k}{a^{k/2}}, \] we will follow these steps: ### Step 1: Simplify the left-hand side We start by simplifying the expression inside the cube root: \[ \frac{a^6 \cdot b^3 \cdot c^{21}}{c^9 \cdot a^{12}} = \frac{a^6}{a^{12}} \cdot \frac{b^3}{1} \cdot \frac{c^{21}}{c^9}. \] Using the property of exponents \(\frac{m}{n} = m - n\), we can rewrite it as: \[ = a^{6 - 12} \cdot b^3 \cdot c^{21 - 9} = a^{-6} \cdot b^3 \cdot c^{12}. \] ### Step 2: Apply the cube root Now we take the cube root of the simplified expression: \[ \sqrt[3]{a^{-6} \cdot b^3 \cdot c^{12}} = \sqrt[3]{a^{-6}} \cdot \sqrt[3]{b^3} \cdot \sqrt[3]{c^{12}}. \] Calculating each term gives us: \[ = a^{-6/3} \cdot b^{3/3} \cdot c^{12/3} = a^{-2} \cdot b^1 \cdot c^4 = \frac{b \cdot c^4}{a^2}. \] ### Step 3: Set the expressions equal Now we set the left-hand side equal to the right-hand side: \[ \frac{b \cdot c^4}{a^2} = \frac{b \cdot c^k}{a^{k/2}}. \] ### Step 4: Compare coefficients Since the bases \(b\) are the same on both sides, we can cancel them out: \[ \frac{c^4}{a^2} = \frac{c^k}{a^{k/2}}. \] Now we can compare the coefficients of \(c\) and \(a\): 1. For \(c\): \(4 = k\) 2. For \(a\): \(2 = \frac{k}{2}\) ### Step 5: Solve for \(k\) From the first equation, we have: \[ k = 4. \] From the second equation, multiplying both sides by 2 gives: \[ k = 4. \] ### Conclusion Thus, the value of \(k\) is \[ \boxed{4}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Subjective Problems.) (Long Answer Type)|5 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Cornet|15 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|7 Videos

Similar Questions

Explore conceptually related problems

If root3((3^(6) xx 4^(3) xx 2^(6))/(8^(9) xx2^(3)))=(3/8)^(k) ,then k = _______ .

root3(a^6 xx b^9) =…………….

Knowledge Check

  • root3(3^6 xx 4^3 xx 2^6)/(8^9 xx 2^3)=……….

    A
    `3/8`
    B
    `9/8`
    C
    `3/(64)`
    D
    `9/(64)`
  • [a xx(3b + 2c), b xx (c-2a), 2c xx (a-3b)] =

    A
    `18[ a" " b" " c]^(2)`
    B
    `-18[a " "b" " c]^(2)`
    C
    `6[a xxb, b xxc, c xx a]`
    D
    `-[a xx b b xx c xx a]`
  • Similar Questions

    Explore conceptually related problems

    If 9^(3)xx 27^(2)xx 81^(2) is equal to 3^(2k) , then find k.

    Simplify : ((21)/(16) xx (12)/(9)) div ((-3)/(8) xx ((-12)/(9)))

    verify that vec(a) xx (vec(b)+ vec(c))=(vec(a) xx vec(b))+(vec(a) xx vec(c)) , "when" (i) vec(a)= hat(i)- hat(j)-3 hat(k), vec(b)= 4 hat(i)-3 hat(j) + hat(k) and vec(c)= 2 hat(i) - hat(j) + 2 hat(k) (ii) vec(a)= 4 hat(i)-hat(j)+hat(k), vec(b)= hat(i)+hat(j)+ hat(k) and vec(c)= hat(i)- hat(j)+hat(k).

    Identify the order of reaction from each of the following rate constants? a) k=2.3 xx 10^(-3) L mol^(-1)s^(-1) b) k=1.25 xx 10^(-2)s^(-1) c) k=2.9440 xx 10^(6) mol L^(-1)s^(-1) d) k=2.8 xx 10^(-8) atm^(-1)s^(-1)

    Find each of the following products: (a) 3 xx (-1) (b) (-1) xx 225 (c) (-21) xx (-30) (d) (-316) xx (-1) (e) (-15 xx 0 xx (-18) (f) (-12) xx (-11) xx (10) (g) 9 xx (-3) xx (-6) (h) (-18) xx (-5) xx (-4) (i) (-1) xx (-2) xx (-3) xx 4 (j) (-3) xx (-6) xx (-2) xx (-1)

    root3(x^6)div root3(x^(12))xx x^(-3) xx root3(x^9) is equivalent to-