Home
Class 14
MATHS
Find the value of ( x + a)/( x - a) + ( ...

Find the value of `( x + a)/( x - a) + ( x + b)/( x - b) `, if ` x = (2ab)/( a + b)`

A

`-2`

B

2

C

1

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \(\frac{x + a}{x - a} + \frac{x + b}{x - b}\) given that \(x = \frac{2ab}{a + b}\), we can follow these steps: ### Step 1: Substitute the value of \(x\) Substituting \(x = \frac{2ab}{a + b}\) into the expression: \[ \frac{\frac{2ab}{a + b} + a}{\frac{2ab}{a + b} - a} + \frac{\frac{2ab}{a + b} + b}{\frac{2ab}{a + b} - b} \] ### Step 2: Simplify \(\frac{x + a}{x - a}\) Now, let's simplify the first part \(\frac{x + a}{x - a}\): 1. **Numerator**: \[ x + a = \frac{2ab}{a + b} + a = \frac{2ab + a(a + b)}{a + b} = \frac{2ab + a^2 + ab}{a + b} = \frac{a^2 + 3ab}{a + b} \] 2. **Denominator**: \[ x - a = \frac{2ab}{a + b} - a = \frac{2ab - a(a + b)}{a + b} = \frac{2ab - a^2 - ab}{a + b} = \frac{ab - a^2}{a + b} = \frac{a(b - a)}{a + b} \] So, \[ \frac{x + a}{x - a} = \frac{\frac{a^2 + 3ab}{a + b}}{\frac{a(b - a)}{a + b}} = \frac{a^2 + 3ab}{a(b - a)} \] ### Step 3: Simplify \(\frac{x + b}{x - b}\) Now, let's simplify the second part \(\frac{x + b}{x - b}\): 1. **Numerator**: \[ x + b = \frac{2ab}{a + b} + b = \frac{2ab + b(a + b)}{a + b} = \frac{2ab + ab + b^2}{a + b} = \frac{3ab + b^2}{a + b} \] 2. **Denominator**: \[ x - b = \frac{2ab}{a + b} - b = \frac{2ab - b(a + b)}{a + b} = \frac{2ab - ab - b^2}{a + b} = \frac{ab - b^2}{a + b} = \frac{b(a - b)}{a + b} \] So, \[ \frac{x + b}{x - b} = \frac{\frac{3ab + b^2}{a + b}}{\frac{b(a - b)}{a + b}} = \frac{3ab + b^2}{b(a - b)} \] ### Step 4: Combine the two parts Now, we can combine both parts: \[ \frac{x + a}{x - a} + \frac{x + b}{x - b} = \frac{a^2 + 3ab}{a(b - a)} + \frac{3ab + b^2}{b(a - b)} \] ### Step 5: Find a common denominator The common denominator is \(ab(b - a)\): \[ = \frac{(a^2 + 3ab)b}{ab(b - a)} + \frac{(3ab + b^2)a}{ab(b - a)} \] ### Step 6: Combine the numerators Combining the numerators: \[ = \frac{(a^2b + 3ab^2) + (3a^2b + ab^2)}{ab(b - a)} = \frac{4a^2b + 4ab^2}{ab(b - a)} = \frac{4ab(a + b)}{ab(b - a)} = \frac{4(a + b)}{b - a} \] ### Final Result Thus, the value of the expression is: \[ \frac{4(a + b)}{b - a} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RATIO,PROPORTION AND VARIATION

    DISHA PUBLICATION|Exercise Practice Exercises ( Standard Level)|26 Videos
  • RATIO,PROPORTION AND VARIATION

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|12 Videos
  • RATIO,PROPORTION AND VARIATION

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • QUADRATIC AND CUBIC EQUATIONS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • SET THEORY

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

Find the value of x x/(x-a)+x/(x-b)=2

Find x in terms of a , b and c : (a)/(x - a) + (b)/(x - b) = (2 c)/(x - c) , x - a , b , c

Knowledge Check

  • If x = ( 4ab)/(a +b) ( a ne b) the value of ( x + 2a)/( x - 2a) + ( x + 2b)/( x - 2b) is

    A
    a
    B
    b
    C
    2 ab
    D
    2
  • If x = ( 8ab)/(a + b) (a ne b) then the value of ( x + 4a)/( x - 4a) + ( x + 4b)/( x - 4b) is

    A
    0
    B
    1
    C
    2
    D
    4
  • If x = (4 sqrt(ab))/(sqrt a + sqrt b) , then what is the value of (x + 2sqrt a)/(x - 2 sqrta) + (x + 2 sqrtb)/(x - 2 sqrt b) " (when " a ne b) ?

    A
    0
    B
    2
    C
    4
    D
    `((sqrt a + sqrt b))/(( sqrt a - sqrt b))`
  • Similar Questions

    Explore conceptually related problems

    Find the value of the remainder, when x^(2) + (a + b) x + ab is divided by (x + a)

    Find the values of a\ &\ b : (lim)_(x->oo)[(x^2+1)/(x+1)-a x-b]=0

    Find the HCF of x ^(2) + (a - b) x - ab, x ^(2) - 2 bx + b ^(2), and x ^(2) - b ^(2).

    If x = (4ab)/(a + b)(a ne b) , then find the value of (x +2a)/(x-2a) + (x + 2b)/(x-2b) ?

    If x=(4ab)/(a+b) , then the value of (x+2a)/(x-2a)+(x+2b)/(x-2b) is