Home
Class 14
MATHS
The sum of the binary numbers (11011) (1...

The sum of the binary numbers `(11011) (10110110)_(2) and (10011x0y)_(2)` is the binary number `(101101101)_(2)` What are the value of x and y?

A

a) x = 1. y = 1

B

b) x= 1. y = 0

C

c) x = 0, y = 1

D

d) x = 0, y = 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) in the binary number \( (10011x0y)_2 \) such that the sum of the binary numbers \( (11011)_2 \), \( (10110110)_2 \), and \( (10011x0y)_2 \) equals \( (101101101)_2 \). ### Step-by-Step Solution: 1. **Convert the Binary Numbers to Decimal**: - Convert \( (11011)_2 \): \[ 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 16 + 8 + 0 + 2 + 1 = 27 \] - Convert \( (10110110)_2 \): \[ 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 128 + 0 + 32 + 16 + 0 + 4 + 2 + 0 = 182 \] - Convert \( (101101101)_2 \): \[ 1 \cdot 2^8 + 0 \cdot 2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 256 + 0 + 64 + 32 + 0 + 8 + 0 + 2 + 1 = 363 \] 2. **Set Up the Equation**: - We know that: \[ (11011)_2 + (10110110)_2 + (10011x0y)_2 = (101101101)_2 \] - In decimal, this can be expressed as: \[ 27 + 182 + (10011x0y)_2 = 363 \] - Therefore, we can find \( (10011x0y)_2 \): \[ (10011x0y)_2 = 363 - 27 - 182 = 154 \] 3. **Convert 154 to Binary**: - To convert \( 154 \) to binary: - \( 154 \div 2 = 77 \) remainder \( 0 \) - \( 77 \div 2 = 38 \) remainder \( 1 \) - \( 38 \div 2 = 19 \) remainder \( 0 \) - \( 19 \div 2 = 9 \) remainder \( 1 \) - \( 9 \div 2 = 4 \) remainder \( 1 \) - \( 4 \div 2 = 2 \) remainder \( 0 \) - \( 2 \div 2 = 1 \) remainder \( 0 \) - \( 1 \div 2 = 0 \) remainder \( 1 \) - Reading the remainders from bottom to top gives us \( (10011010)_2 \). 4. **Identify \( x \) and \( y \)**: - From \( (10011x0y)_2 \) we have: \[ 10011x0y = 10011010 \] - Comparing both, we find: - \( x = 1 \) - \( y = 0 \) ### Final Answer: The values of \( x \) and \( y \) are: \[ x = 1, \quad y = 0 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINARY NUMBER

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|27 Videos
  • AREA BOUNDED BY CURVES

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|39 Videos
  • BINOMIAL THEOREM

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|41 Videos

Similar Questions

Explore conceptually related problems

The sum of binary numbers 1100100 and 1101110 is ______

Find the decimal number of binary number (111101.01)_(2)

Knowledge Check

  • The sum of the binary numbers (11011)_(2)(10110110)_(2) and (10011x0y)_(2) is the binary number (101101101)_(2) . What are the values of x and y?

    A
    x=1, y=1
    B
    x=1, y=0
    C
    x=0, y=1
    D
    x=0, y=0
  • If the sum of the binary numbers (11011)_(2) (10110110)_(2) and (10011 x0y)_(2) is the binary number (101101101)_(2) then the values of X and y respectively, are:

    A
    1 and 1
    B
    1 and 0
    C
    0 and 1
    D
    0 and 0
  • Sum of the two binary numbers (1000010)_(2) and (110011)_(2) is

    A
    `(111101)_(2)`
    B
    `(111111)_(2)`
    C
    `(101111)_(2)`
    D
    `(111001)_(2)`
  • Similar Questions

    Explore conceptually related problems

    What is the decimal number of binary number (111001.01)_(2) ?

    2. 5 The binary number 10111 is equivalent to the decimal number

    Sum of the two binary numbers (1000010)_(2) and (11011)_(2) is

    The decimal equivalent of the binary number (11010.101)_(2) is

    The difference of two numbers (1100110011)_(2) and (1101001011)_(2) in binary system is.