Home
Class 14
MATHS
What is tan{2tan^(-1)""(1)/(3)}=...

What is `tan{2tan^(-1)""(1)/(3)}=`

A

`2//3`

B

`3//4`

C

`3//8`

D

`1//9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan\left(2 \tan^{-1}\left(\frac{1}{3}\right)\right) \), we can use the formula for the tangent of double angles in terms of inverse tangent. The formula we will use is: \[ \tan(2 \tan^{-1}(x)) = \frac{2x}{1 - x^2} \] ### Step-by-step Solution: 1. **Identify the value of \( x \)**: Here, \( x = \frac{1}{3} \). 2. **Apply the formula**: We substitute \( x \) into the formula: \[ \tan\left(2 \tan^{-1}\left(\frac{1}{3}\right)\right) = \frac{2 \cdot \frac{1}{3}}{1 - \left(\frac{1}{3}\right)^2} \] 3. **Calculate the numerator**: The numerator becomes: \[ 2 \cdot \frac{1}{3} = \frac{2}{3} \] 4. **Calculate the denominator**: First, calculate \( \left(\frac{1}{3}\right)^2 \): \[ \left(\frac{1}{3}\right)^2 = \frac{1}{9} \] Now substitute this back into the denominator: \[ 1 - \frac{1}{9} = \frac{9}{9} - \frac{1}{9} = \frac{8}{9} \] 5. **Combine the results**: Now we can substitute the numerator and denominator back into our expression: \[ \tan\left(2 \tan^{-1}\left(\frac{1}{3}\right)\right) = \frac{\frac{2}{3}}{\frac{8}{9}} \] 6. **Simplify the fraction**: To simplify, multiply by the reciprocal of the denominator: \[ = \frac{2}{3} \cdot \frac{9}{8} = \frac{2 \cdot 9}{3 \cdot 8} = \frac{18}{24} \] 7. **Reduce the fraction**: Now reduce \( \frac{18}{24} \): \[ = \frac{3}{4} \] ### Final Answer: Thus, the value of \( \tan\left(2 \tan^{-1}\left(\frac{1}{3}\right)\right) \) is \( \frac{3}{4} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos
  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos

Similar Questions

Explore conceptually related problems

tan(2tan^(-1)((1)/(3))-(pi)/(4))

Prove that tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(2)

Knowledge Check

  • What is tan^(-1)((1)/(2))+tan^(-1)((1)/(3)) equal to ?

    A
    `(pi)/(2)`
    B
    `(pi)/(3)`
    C
    `(pi)/(4)`
    D
    `(pi)/(6)`
  • What is tan^(-1)((1)/(2))+tan^(-1)((1)/(3)) equal to?

    A
    `(pi)/(2)`
    B
    `(pi)/(3)`
    C
    `(pi)/(4)`
    D
    `(pi)/(6)`
  • What is tan^(-1)((1)/(4))+tan^(-1)((3)/(5)) equal to ?

    A
    0
    B
    `(pi)/(4)`
    C
    `(pi)/(3)`
    D
    `(pi)/(2)`
  • Similar Questions

    Explore conceptually related problems

    Pove that i) tan^(-1)1/2+tan^(-1)2/11=tan^(-1)3/4 ii) tan^(-1)2/11+tan^(-1)7/24=tan^(-1)1/2 iii) tan^(-1)1+tan^(-1)1/2+tan^(-1)1/3=pi/2 iv) 2tan^(-1)1/3+tan^(-1)/17=pi/4 v) tan^(-1)2-tan^(-1)1=tan^(-1)1/3 vi) tan^(-1)+tan^(-1)2+tan^(-1)3=pi vii) tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4 viii) tan^(-1)1/4+tan^(-1)2/9=1/2tan^(-1)4/3

    tan^(-1)(1/2)+tan^(-1)(1/3)=?

    (tan^(-1)2+tan^(-1)3)=?

    tan^(-1)""1/7+2tan^(-1)"" 1/3=

    tan^(-1)"" 1/2+tan^(-1)"" 1/3=