Home
Class 14
MATHS
The value of (1)/(sqrt(2))"sin"(pi)/(...

The value of `(1)/(sqrt(2))"sin"(pi)/(6)"cos"(pi)/(4)-"cot"(pi)/(3)"sec"(pi)/(6)+(5"tan"(pi)/(4))/("12sin"(pi)/(2))` is equal to

A

0

B

1

C

2

D

`(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{\sqrt{2}} \sin\left(\frac{\pi}{6}\right) \cos\left(\frac{\pi}{4}\right) - \cot\left(\frac{\pi}{3}\right) \sec\left(\frac{\pi}{6}\right) + \frac{5 \tan\left(\frac{\pi}{4}\right)}{12 \sin\left(\frac{\pi}{2}\right)} \] we will evaluate each trigonometric function step by step. ### Step 1: Evaluate each trigonometric function 1. **Evaluate \(\sin\left(\frac{\pi}{6}\right)\)**: \[ \sin\left(\frac{\pi}{6}\right) = \sin(30^\circ) = \frac{1}{2} \] 2. **Evaluate \(\cos\left(\frac{\pi}{4}\right)\)**: \[ \cos\left(\frac{\pi}{4}\right) = \cos(45^\circ) = \frac{1}{\sqrt{2}} \] 3. **Evaluate \(\cot\left(\frac{\pi}{3}\right)\)**: \[ \cot\left(\frac{\pi}{3}\right) = \cot(60^\circ) = \frac{1}{\sqrt{3}} \] 4. **Evaluate \(\sec\left(\frac{\pi}{6}\right)\)**: \[ \sec\left(\frac{\pi}{6}\right) = \sec(30^\circ) = \frac{2}{\sqrt{3}} \] 5. **Evaluate \(\tan\left(\frac{\pi}{4}\right)\)**: \[ \tan\left(\frac{\pi}{4}\right) = \tan(45^\circ) = 1 \] 6. **Evaluate \(\sin\left(\frac{\pi}{2}\right)\)**: \[ \sin\left(\frac{\pi}{2}\right) = \sin(90^\circ) = 1 \] ### Step 2: Substitute the values into the expression Now we substitute these values back into the expression: \[ \frac{1}{\sqrt{2}} \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{2}} - \left(\frac{1}{\sqrt{3}} \cdot \frac{2}{\sqrt{3}}\right) + \frac{5 \cdot 1}{12 \cdot 1} \] ### Step 3: Simplify each term 1. **First term**: \[ \frac{1}{\sqrt{2}} \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{2}} = \frac{1}{2\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{1}{4} \] 2. **Second term**: \[ \frac{1}{\sqrt{3}} \cdot \frac{2}{\sqrt{3}} = \frac{2}{3} \] 3. **Third term**: \[ \frac{5 \cdot 1}{12 \cdot 1} = \frac{5}{12} \] ### Step 4: Combine the terms Now we combine all the terms: \[ \frac{1}{4} - \frac{2}{3} + \frac{5}{12} \] ### Step 5: Find a common denominator The common denominator for \(4\), \(3\), and \(12\) is \(12\). We convert each fraction: 1. **Convert \(\frac{1}{4}\)**: \[ \frac{1}{4} = \frac{3}{12} \] 2. **Convert \(\frac{2}{3}\)**: \[ \frac{2}{3} = \frac{8}{12} \] 3. **Already in terms of \(12\)**: \[ \frac{5}{12} \] ### Step 6: Combine the fractions Now we can combine them: \[ \frac{3}{12} - \frac{8}{12} + \frac{5}{12} = \frac{3 - 8 + 5}{12} = \frac{0}{12} = 0 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

Value of expression sin^(2)(pi)/(6)+cos^(2)(pi)/(4)-sec(pi)/(3) is

The value of 64sqrt(3)sin((pi)/(48))cos((pi)/(48))cos((pi)/(24))cos((pi)/(12))cos((pi)/(6))

Knowledge Check

  • sin"" (pi)/(4) cos"" (pi)/(12) - cos"" (pi)/(4) sin"" (pi)/(12) is equal to

    A
    `(1)/( sqrt3)`
    B
    `sqrt3`
    C
    `(sqrt3)/(2)`
    D
    `(1)/(2)`
  • sin ""(pi)/(4) cos ""(pi)/(12) - cos ""(pi)/(4) sin ""(pi)/(12) is equal to

    A
    `(1)/(sqrt(3))`
    B
    `sqrt(3)`
    C
    `(sqrt(3))/(2)`
    D
    `(1)/(2)`
  • "sin"^(2)(pi)/(6)+"cos"^(2)(pi)/(3)-"tan"^(2)(pi)/(4)+(1)/(2) is:

    A
    `(1)/(2)`
    B
    `-(1)/(2)`
    C
    1
    D
    0
  • Similar Questions

    Explore conceptually related problems

    sin((7 pi)/(4))*cos((7 pi)/(6))*tan((3 pi)/(4))*cot((11 pi)/(6)) is equal to

    Find the value of cos""(pi)/(12)(sin""(5pi)/(12)+cos""(pi)/(4))+sin""(pi)/(12)(cos""(5pi)/(12)-sin""(pi)/(4)) .

    "sin"^(2)(pi)/(6)+"cos"^(2)(pi)/(3)-"tan"^(2)(pi)/(4)+(1)/(2) is:

    tan""(pi)/(8)tan""(pi)/(12)tan""(3pi)/(8)tan""(5pi)/(12)-sin^(2)""(pi)/(6)=?

    sin (pi)/(4) cos (pi)/(12) - cos (pi)/(4) sin (pi)/(12) is equal to