Home
Class 14
MATHS
The value of (1)/(sqrt(2))"sin"(pi)/(...

The value of `(1)/(sqrt(2))"sin"(pi)/(6)"cos"(pi)/(4)-"cot"(pi)/(3)"sec"(pi)/(6)+(5"tan"(pi)/(4))/("12sin"(pi)/(2))` is equal to

A

0

B

1

C

2

D

`(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{\sqrt{2}} \sin\left(\frac{\pi}{6}\right) \cos\left(\frac{\pi}{4}\right) - \cot\left(\frac{\pi}{3}\right) \sec\left(\frac{\pi}{6}\right) + \frac{5 \tan\left(\frac{\pi}{4}\right)}{12 \sin\left(\frac{\pi}{2}\right)} \] we will evaluate each trigonometric function step by step. ### Step 1: Evaluate each trigonometric function 1. **Evaluate \(\sin\left(\frac{\pi}{6}\right)\)**: \[ \sin\left(\frac{\pi}{6}\right) = \sin(30^\circ) = \frac{1}{2} \] 2. **Evaluate \(\cos\left(\frac{\pi}{4}\right)\)**: \[ \cos\left(\frac{\pi}{4}\right) = \cos(45^\circ) = \frac{1}{\sqrt{2}} \] 3. **Evaluate \(\cot\left(\frac{\pi}{3}\right)\)**: \[ \cot\left(\frac{\pi}{3}\right) = \cot(60^\circ) = \frac{1}{\sqrt{3}} \] 4. **Evaluate \(\sec\left(\frac{\pi}{6}\right)\)**: \[ \sec\left(\frac{\pi}{6}\right) = \sec(30^\circ) = \frac{2}{\sqrt{3}} \] 5. **Evaluate \(\tan\left(\frac{\pi}{4}\right)\)**: \[ \tan\left(\frac{\pi}{4}\right) = \tan(45^\circ) = 1 \] 6. **Evaluate \(\sin\left(\frac{\pi}{2}\right)\)**: \[ \sin\left(\frac{\pi}{2}\right) = \sin(90^\circ) = 1 \] ### Step 2: Substitute the values into the expression Now we substitute these values back into the expression: \[ \frac{1}{\sqrt{2}} \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{2}} - \left(\frac{1}{\sqrt{3}} \cdot \frac{2}{\sqrt{3}}\right) + \frac{5 \cdot 1}{12 \cdot 1} \] ### Step 3: Simplify each term 1. **First term**: \[ \frac{1}{\sqrt{2}} \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{2}} = \frac{1}{2\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{1}{4} \] 2. **Second term**: \[ \frac{1}{\sqrt{3}} \cdot \frac{2}{\sqrt{3}} = \frac{2}{3} \] 3. **Third term**: \[ \frac{5 \cdot 1}{12 \cdot 1} = \frac{5}{12} \] ### Step 4: Combine the terms Now we combine all the terms: \[ \frac{1}{4} - \frac{2}{3} + \frac{5}{12} \] ### Step 5: Find a common denominator The common denominator for \(4\), \(3\), and \(12\) is \(12\). We convert each fraction: 1. **Convert \(\frac{1}{4}\)**: \[ \frac{1}{4} = \frac{3}{12} \] 2. **Convert \(\frac{2}{3}\)**: \[ \frac{2}{3} = \frac{8}{12} \] 3. **Already in terms of \(12\)**: \[ \frac{5}{12} \] ### Step 6: Combine the fractions Now we can combine them: \[ \frac{3}{12} - \frac{8}{12} + \frac{5}{12} = \frac{3 - 8 + 5}{12} = \frac{0}{12} = 0 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

sin ""(pi)/(4) cos ""(pi)/(12) - cos ""(pi)/(4) sin ""(pi)/(12) is equal to

"sin"^(2)(pi)/(6)+"cos"^(2)(pi)/(3)-"tan"^(2)(pi)/(4)+(1)/(2) is:

"sin"^(2)(pi)/(6)+"cos"^(2)(pi)/(3)-"tan"^(2)(pi)/(4)+(1)/(2) is:

tan""(pi)/(8)tan""(pi)/(12)tan""(3pi)/(8)tan""(5pi)/(12)-sin^(2)""(pi)/(6)=?

Value of expression sin^(2)(pi)/(6)+cos^(2)(pi)/(4)-sec(pi)/(3) is

The value of 64sqrt(3)sin((pi)/(48))cos((pi)/(48))cos((pi)/(24))cos((pi)/(12))cos((pi)/(6))

sin((7 pi)/(4))*cos((7 pi)/(6))*tan((3 pi)/(4))*cot((11 pi)/(6)) is equal to

Find the value of cos""(pi)/(12)(sin""(5pi)/(12)+cos""(pi)/(4))+sin""(pi)/(12)(cos""(5pi)/(12)-sin""(pi)/(4)) .

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. If cos^2 theta - sin^2 theta = 1/3, where 0 le theta le pi/2, then the...

    Text Solution

    |

  2. If tan theta = 1/(sqrt(11)) and 0 < theta < pi/2, then the value of ("...

    Text Solution

    |

  3. The value of (1)/(sqrt(2))"sin"(pi)/(6)"cos"(pi)/(4)-"cot"(pi)/(3)"...

    Text Solution

    |

  4. If sintheta=(3)/(5) , then the value of (tantheta+costheta)/(cotthet...

    Text Solution

    |

  5. If acostheta +bsin theta=pand a sin theta-b cos theta=q, then the r...

    Text Solution

    |

  6. If (sinalpha+"cosec"alpha)^(2)+(cosalpha+secalpha)^(2)=k+tan^(2)alpha...

    Text Solution

    |

  7. If sin21^(@)=(x)/(y) , then sec21^(@)-sin69^(@) is equal to

    Text Solution

    |

  8. If costheta=(x^(2)-y^(2))/(x^(2)+y^(2)) then the value of cotthet...

    Text Solution

    |

  9. If 7sinalpha=24cosalpha,0ltalphalt(pi)/(2) then the value of 14tana...

    Text Solution

    |

  10. If 2sintheta+costheta=(7)/(3) then the value of (tan^(2)theta-sec...

    Text Solution

    |

  11. If 29tan theta=31 , then the value of (1+2sinthetacostheta)/(1-2...

    Text Solution

    |

  12. ABCD is a rectangle of which AC is a diagonal .The value of ...

    Text Solution

    |

  13. For any real values of theta,sqrt((sectheta-1)/(Sectheta+1))=?

    Text Solution

    |

  14. If the sum and difference of two angles are 135^(@)and(pi)/(12) ...

    Text Solution

    |

  15. In a Delta ABC, AD divides BC in the ratio 1:3. If angle B=60^(@) ang...

    Text Solution

    |

  16. If alpha+beta=90^(@)andalpha:beta=2:1, then the ratio of cosalpha" ...

    Text Solution

    |

  17. Value of sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-co...

    Text Solution

    |

  18. If sin5theta=cos20^(@)(0^(@)ltthetalt90^(@)) then value of theta ...

    Text Solution

    |

  19. If 0^(@)ltthetalt90^(@)and2sectheta=3"cosec"^(2)theta then theta is

    Text Solution

    |

  20. Find the value of sqrt((1-sintheta)/(1+sintheta))+sqrt((1+sintheta)/(1...

    Text Solution

    |