Home
Class 14
MATHS
If sinA=(3)/(5)andcosB=(12)/(13),what is...

If `sinA=(3)/(5)andcosB=(12)/(13)`,what is the value of `(tanA-tanB)/(1+tanAtanB)`,it being given that A and B are acute angles ?

A

`(15)/(63)`

B

`(19)/(63)`

C

`(17)/(65)`

D

`(16)/(63)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\tan A - \tan B) / (1 + \tan A \tan B)\) given that \(\sin A = \frac{3}{5}\) and \(\cos B = \frac{12}{13}\). ### Step 1: Find \(\tan A\) Given \(\sin A = \frac{3}{5}\), we can use the Pythagorean identity to find \(\cos A\): \[ \cos^2 A + \sin^2 A = 1 \] Substituting \(\sin A\): \[ \cos^2 A + \left(\frac{3}{5}\right)^2 = 1 \] \[ \cos^2 A + \frac{9}{25} = 1 \] \[ \cos^2 A = 1 - \frac{9}{25} = \frac{16}{25} \] \[ \cos A = \sqrt{\frac{16}{25}} = \frac{4}{5} \] Now, we can find \(\tan A\): \[ \tan A = \frac{\sin A}{\cos A} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] ### Step 2: Find \(\tan B\) Given \(\cos B = \frac{12}{13}\), we can use the Pythagorean identity to find \(\sin B\): \[ \sin^2 B + \cos^2 B = 1 \] Substituting \(\cos B\): \[ \sin^2 B + \left(\frac{12}{13}\right)^2 = 1 \] \[ \sin^2 B + \frac{144}{169} = 1 \] \[ \sin^2 B = 1 - \frac{144}{169} = \frac{25}{169} \] \[ \sin B = \sqrt{\frac{25}{169}} = \frac{5}{13} \] Now, we can find \(\tan B\): \[ \tan B = \frac{\sin B}{\cos B} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12} \] ### Step 3: Substitute \(\tan A\) and \(\tan B\) into the expression Now we substitute \(\tan A\) and \(\tan B\) into the expression: \[ \frac{\tan A - \tan B}{1 + \tan A \tan B} = \frac{\frac{3}{4} - \frac{5}{12}}{1 + \frac{3}{4} \cdot \frac{5}{12}} \] ### Step 4: Simplify the numerator To simplify \(\frac{3}{4} - \frac{5}{12}\), we need a common denominator: The least common multiple of 4 and 12 is 12. \[ \frac{3}{4} = \frac{9}{12} \] So, \[ \frac{3}{4} - \frac{5}{12} = \frac{9}{12} - \frac{5}{12} = \frac{4}{12} = \frac{1}{3} \] ### Step 5: Simplify the denominator Now we simplify \(1 + \tan A \tan B\): \[ \tan A \tan B = \frac{3}{4} \cdot \frac{5}{12} = \frac{15}{48} \] Now, simplifying \(1 + \frac{15}{48}\): \[ 1 = \frac{48}{48} \] Thus, \[ 1 + \frac{15}{48} = \frac{48 + 15}{48} = \frac{63}{48} \] ### Step 6: Combine the results Now we can combine the results: \[ \frac{\frac{1}{3}}{\frac{63}{48}} = \frac{1}{3} \cdot \frac{48}{63} = \frac{48}{189} \] ### Step 7: Simplify the fraction We can simplify \(\frac{48}{189}\): \[ \frac{48 \div 3}{189 \div 3} = \frac{16}{63} \] Thus, the final answer is: \[ \frac{\tan A - \tan B}{1 + \tan A \tan B} = \frac{16}{63} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -V|45 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If tanA=m/(m-1) and tanB=1/(2m-1) , find the value of (tanA-B) .

If A and B are supplementary angles then find the value of (tanA+tanB)/(1-tanAtanB)

Knowledge Check

  • If cosA=(3)/(5) and sinB=(5)/(13) , find the value of (tanA+tanB)/(1-tanAtanB) :

    A
    `(63)/(16)`
    B
    `(36)/(16)`
    C
    `(61)/(36)`
    D
    none of these
  • If tanA=(1)/(3)andtanB=(2)/(5) , what is the value of tan (2A+B) ?

    A
    `(8)/(15)`
    B
    `(6)/(13)`
    C
    `(37)/(115)`
    D
    `(23)/(14)`
  • If sin A = (3)/(5) and cos B = (12)/(13) . Then the value of (tan A - tan B)/(1 + tan A tan B) is equal to

    A
    `(23)/(16)`
    B
    `(16)/(63)`
    C
    `(1)/(63)`
    D
    `(13)/(63)`
  • Similar Questions

    Explore conceptually related problems

    If tanA=(1)/(2)andtanB=(1)/(3) , then what is the value of (A + B) ?

    If cosA=(5)/(13) then what is the value of (sinA-cotA)/(2tanA) ?

    If A=(41pi)/(12) , then what is the value of (1-3tan^(2)A)/(3tanA-tan^(3)A) ?

    If tan^(2)B=(1-sinA)/(1+sinA) then what is the value of A+2B ?

    If A,Bin(0,pi//2),sinA=(4)/(5)andcos(A+B)=-(12)/(13) , then sinB=?