Home
Class 14
MATHS
The value of ("cosec"a-sina)(seca-cos...

The value of `("cosec"a-sina)(seca-cosa)(tana+cota)` is

A

1

B

2

C

6

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \((\csc \alpha - \sin \alpha)(\sec \alpha - \cos \alpha)(\tan \alpha + \cot \alpha)\), we can evaluate it by substituting a specific angle for \(\alpha\). A good choice is to use \(\alpha = 45^\circ\) because the trigonometric values at this angle are straightforward. ### Step-by-Step Solution: 1. **Substitute \(\alpha = 45^\circ\)**: \[ \csc 45^\circ = \frac{1}{\sin 45^\circ} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2} \] \[ \sin 45^\circ = \frac{1}{\sqrt{2}} \] \[ \sec 45^\circ = \frac{1}{\cos 45^\circ} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2} \] \[ \cos 45^\circ = \frac{1}{\sqrt{2}} \] \[ \tan 45^\circ = 1 \] \[ \cot 45^\circ = 1 \] 2. **Calculate each part of the expression**: - First part: \[ \csc 45^\circ - \sin 45^\circ = \sqrt{2} - \frac{1}{\sqrt{2}} = \sqrt{2} - \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \] - Second part: \[ \sec 45^\circ - \cos 45^\circ = \sqrt{2} - \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \] - Third part: \[ \tan 45^\circ + \cot 45^\circ = 1 + 1 = 2 \] 3. **Combine the results**: \[ (\csc 45^\circ - \sin 45^\circ)(\sec 45^\circ - \cos 45^\circ)(\tan 45^\circ + \cot 45^\circ) = \left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)(2) \] \[ = \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}\right) \cdot 2 = \left(\frac{1}{2}\right) \cdot 2 = 1 \] Thus, the value of the expression is \(\boxed{1}\).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

Porve that : (cosecA-sinA)(secA-cosA) =(1)/(tanA+cotA)

If the angles of DeltaABC are in ratio 1:1:2, respectively (the largest angle being angle C), then the value of (secA)/("cosec"B)-(tanA)/(cotB) is

Knowledge Check

  • (cosecA-sinA)(secA-cosA)(tanA+cotA) = __________.

    A
    -1
    B
    2
    C
    0
    D
    1
  • The value of (secA + tanA-1) (sec A -tanA+1) -2tanA is equal to

    A
    sec A
    B
    2 secA
    C
    0
    D
    1
  • cosA(secA-cosA)(cotA+tanA)=?

    A
    `tanA`
    B
    `SecA`
    C
    `sinA`
    D
    `cotA`
  • Similar Questions

    Explore conceptually related problems

    (cosecA - sinA)^2+(sec A-cosA)^2- (cotA - tanA)^2 is equal to : (cosecA - sinA)^2+(sec A-cosA)^2- (cotA - tanA)^2 का मान किसके बराबर है?

    secA(1-sinA)(secA+tanA)=1

    Prove that : (cosec A-sin A ) (sec A-cos A)=sinA cosA

    The simplified value of (SecA-cosA)^(2)+("cosec" A-sinA)^(2)-(cotA-tanA)^(2) is

    The value of (sinA)/(1+cosA)+(sinA)/(1-cosA) is (0^(@)ltAlt90^(@))